COMPARISON OF RESAMPLING EFFICIENCY LEVELS OF JACKKNIFE AND DOUBLE JACKKNIFE IN PATH ANALYSIS
Abstract
The assumption of normality is often not fulfilled, this causes the estimation of the resulting parameters to be less efficient. The problem with assuming that normality is not satisfied can be overcome by resampling. The use of resampling allows data to be applied free of distributional assumptions. In this study, a research simulation was carried out by applying Jackknife resampling and Double Jackknife resampling in path analysis with the assumption that the normality of the residuals was not fulfilled and the number of resampling was set at 100 with the degree of closeness level of relationship between variables consisting of low closeness, medium closeness, and high closeness. Based on the simulation results, resampling with a power of 100 can overcome the problem of unfulfilled normality assumptions. In addition, the comparison of the relative efficiency level of the resampling jackknife and double jackknife in the path analysis obtained by the resampling double jackknife has more efficiency than the resampling jackknife
Downloads
References
J. C. Westland, “Partial least squares path analysis,” Struct. Equ. Model., pp. 17–38, 2019.
R. J. Mitchell, “Path analysis: pollination,” in Design and analysis of ecological experiments, Chapman and Hall/CRC, 2020, pp. 211–231.
V. Y. Sundara, R. Warti, and A. Mardia, “SIMULASI METODE RESAMPLING DAN PENDUGAAN DATA HILANG TERBAIK,” J. Ris. dan Apl. Mat., vol. 3, no. 2, pp. 101–108, 2019.
V. Chittora, “Resampling Techniques,” Biot. Res. Today, vol. 4, no. 2, pp. 123–125, 2022.
R. S. Dwiputra, “Perbandingan Resampling Dengan Metode Jackknifing Dan Bootstrapping Pada Model WarpPLS.” Universitas Brawijaya, 2018.
A. Fernandes, “Comparison of Parameter Estimator Efficiency Levels of Path Analysis with Bootstrap and Jack Knife (Delete-5) Resampling Methods on Simulation Data,” J. Mat. Stat. dan Komputasi, vol. 16, no. 3, pp. 353–364, 2020.
J. Shao and D. Tu, The jackknife and bootstrap. Springer Science & Business Media, 2012.
A. McIntosh, “The Jackknife estimation method,” arXiv Prepr. arXiv1606.00497, 2016.
A. Alifa, “Analisis Jalur Kuadratik Dengan Resampling Bootstrap Pada Data Simulasi.” Universitas Brawijaya, 2020.
Y. Y. Rinela, “Perbandingan Efisiensi Penduga Dengan Pendekatan Resampling Bootstrap Dan Blindfold Pada Analisis Jalur (Studi pada Kualitas Produk Teh Casabat terhadap Kepuasan Pelanggan dan terhadap Loyalitas Pelanggan).” Universitas Brawijaya, 2018.
U. N. Y. BINTI WASIO, “PERBANDINGAN EFEKTIVITAS METODE JACKKNIFE DAN METODE BOOTSTRAP DALAM ESTIMASI PARAMETER REGRESI DENGAN PENYIMPANGAN ASUMSI.” Universitas Mataram, 2017.
A. Fauzy, “Simulasi Tingkat Kepercayaan dari Data Berdistribusi Eksponensial Satu Parameter Tersensor Tipe-II Double,” Statistika, vol. 14, no. 1, 2014.
H. L. Nurjannah, “Konsistensi Besaran Resampling Jackknife Pada Analisis Jalur Kuadratik.” Universitas Brawijaya, 2020.
W. van der Bijl, “phylopath: Easy phylogenetic path analysis in R,” PeerJ, vol. 6, p. e4718, 2018.
G. D. Garson, Path analysis. Statistical Associates Publishing Asheboro, NC, 2013.
M. H. Afwa, “Efisiensi Penduga Parameter Teknik Resampling Bootstrap Dan Jackknife Pada Analisis Jalur Kuadratik (Studi Kasus Di Pemerintah Kota A).” Universitas Brawijaya, 2020.
S. Dhaene and Y. Rosseel, “Resampling Based Bias Correction for Small Sample SEM,” Struct. Equ. Model. A Multidiscip. J., pp. 1–17, 2022.
M. F. Tyas, “Studi Simulasi Efisiensi Dan Konsistensi Resampling Bootstrap Dan Jackknife Dalam Menduga Parameter Pada Analisis Jalur.” Universitas Brawijaya, 2019.
L. Wang and F. Yu, “Jackknife resampling parameter estimation method for weighted total least squares,” Commun. Stat. Methods, vol. 49, no. 23, pp. 5810–5828, 2020.
T. O. Prawita, “Perbandingan Tingkat Efisiensi Penduga Parameter Analisis Jalur Dengan Resampling Bootstrap Dan Jackknife Delete-5 Pada Data Simulasi.” Universitas Brawijaya, 2019.
Copyright (c) 2023 M. Fikar Papalia, Solimun Solimun, Nurjannah Nurjannah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.