TOTAL EDGE IRREGULAR LABELING FOR TRIANGULAR GRID GRAPHS AND RELATED GRAPHS

  • Muhammad Nurul Huda Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia
  • Yeni Susanti Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia
Keywords: Total edge irregularity strength, Triangular grid graphs, Spanning subgraphs, Sierpiński gasket graphs

Abstract

Let  be a graph with  and  are the set of its vertices and edges, respectively. Total edge irregular -labeling on  is a map from  to  satisfies for any two distinct edges have distinct weights. The minimum  for which the  satisfies the labeling is spoken as its strength of total edge irregular labeling, represented by . In this paper, we discuss the tes of triangular grid graphs, its spanning subgraphs, and Sierpiński gasket graphs.

Downloads

Download data is not yet available.

References

M. Bača, S. Jendrol, M. Miller, and J. Ryan, “On irregular total labellings,” Discrete Math., vol. 307, no. 11–12, pp. 1378–1388, 2007.

J. Ivančo and S. Jendrol, “Total edge irregularity strength of trees,” Discuss. Math. Graph Theory, vol. 26, no. 3, pp. 449, 2006.

R. Rajendran and K. KM, “Total edge irregularity strength of some cycle related graphs,” Indones. J. Comb., vol. 5, no. 1, pp. 17, 2021.

F. Pfender, “Total edge irregularity strength of large graphs,” Discrete Math., vol. 312, no. 2, pp. 229–237, 2012.

A. Ahmad and M. Bača, “Edge irregular total labeling of certain family of graphs,” AKCE Int. J. Graphs Comb., vol. 6, no. 1, pp. 21–29, 2009.

S. Jendrol, J. Miškuf, and R. Soták, “Total Edge Irregularity Strength of Complete Graphs and Complete Bipartite Graphs,” Electron. Notes Discret. Math., vol. 28, pp. 281–285, 2007.

A. Ahmad, M. K. Siddiqui, and D. Afzal, “On the total edge irregularity strength of zigzag graphs,” Australas. J. Comb., vol. 54, no. 2, pp. 141–149, 2012.

P. Jeyanthi and T. Nadu, “Total Edge Irregularity Strength of Disjoint Union of Wheel Graphs,” Electron. Notes Discret. Math., vol. 48, pp. 175–182, 2015.

R. W. Putra and Y. Susanti, “On total edge irregularity strength of centralized uniform theta graphs,” AKCE Int. J. Graphs Comb., vol. 15, no. 1, pp. 7–13, 2018.

L. Ratnasari, S. Wahyuni, Y. Susanti, D. J. E. Palupi, “Total edge irregularity strength of book graphs and double book graphs,” AIP Conference Proceedings, 2192, 040013, 2019.

L. Ratnasari, S. Wahyuni, Y. Susanti, and D. J. E. Palupi, “Total edge irregularity strength of triple book graphs,” J. Phys. Conf. Ser., vol. 1722, no. 1, 2021.

F. Salama, “On total edge irregularity strength of polar grid graph,” J. Taibah Univ. Sci., vol. 13, no. 1, pp. 912–916, 2019.

Y. Susanti, Y. Indah Puspitasari, and H. Khotimah, “On total edge irregularity strength of staircase graphs and related graphs,” Iran. J. Math. Sci. Informatics, vol. 15, no. 1, pp. 1–13, 2020.

Y. Susanti, S. Wahyuni, A. Sutjijana, S. Sutopo, and I. Ernanto, “Generalized Arithmetic Staircase Graphs and Their Total Edge Irregularity Strengths,” Symmetry (Basel)., vol. 14, no. 9, 2022.

L. Ratnasari and Y. Susanti, “Total edge irregularity strength of ladder-related graphs,” Asian European Journal of Mathematics, vol. 13, no. 4, 2020.

Published
2023-06-11
How to Cite
[1]
M. N. Huda and Y. Susanti, “TOTAL EDGE IRREGULAR LABELING FOR TRIANGULAR GRID GRAPHS AND RELATED GRAPHS”, BAREKENG: J. Math. & App., vol. 17, no. 2, pp. 0855-0866, Jun. 2023.