CLUSTERIZATION OF REGION IN SOUTH SUMATERA BASED ON COVID-19 CASE DATA

  • Anita Saragih Department of Mathematics and Natural Science, Sriwijaya University, Indonesia
  • Dian Cahyawati Sukanda Department of Mathematics and Natural Science, Sriwijaya University, Indonesia
  • Ning Eliyati Department of Mathematics and Natural Science, Sriwijaya University, Indonesia
Keywords: Agglomerative method, Cluster Analysis, Covid-19, Silhoutte, South Sumatera

Abstract

Based on Covid-19 case data as of July 2022, South Sumatra Province has the 15th highest rank out of 34 provinces in Indonesia, with confirmed cases totalling 82,407. This showed that the spread of Covid-19 in South Sumatra was still high. This study aimed to determine the cluster of regions in South Sumatra based on Covid-19 case data. Clustering regions used agglomerative hierarchical method. The process began with standardizing the data, calculating the similarity distance between objects, determining the optimal number of clusters using the Silhouette method, and the last was clustering analysis. This study found that the optimal number of clusters consisted of two clusters. The clustering process starts with objects 2 and objects 4 because these two objects have the closest similarity distance. In conclusion, objects with the closest similarity distance (in one cluster) have the same data movement (fluctuation).

Downloads

Download data is not yet available.

References

J. B. Soriano, S. Murthy, J. C. Marshall, P. Relan, and J. V. Diaz, “A clinical case definition of post-COVID-19 condition by a Delphi consensus,” Lancet Infect. Dis., vol. 22, no. 4, pp. e102–e107, 2022, doi: 10.1016/S1473-3099(21)00703-9.

D. Handayani, F. Isbaniah, E. Burhan, and H. Agustin, “Penyakit Virus Corona 2019,” REPIROLOGI Indones., vol. 40, no. 2, 2020.

M. I. Rizki, T. A. Taqqiyuddin, and J. J. Cerelia, “K-Medoids Clustering dengan Jarak Dynamic Time Warping dalam Mengelompokkan Provinsi di Indonesia Berdasarkan Kasus Aktif Covid-19,” Prism. Pros. Semin. Nas. Mat., vol. 5, pp. 685–692, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/.

A. Abunayan, B. Aljadaan, M. Almudayfir, S. Alshareef, and A. alamer, “The effect of COVID-19 on orthopedic elective/emergency procedures in a tertiary hospital Riyadh Saudi Arabia. A cross-sectional study,” Ann. Med. Surg., vol. 81, no. July, p. 104331, 2022, doi: 10.1016/j.amsu.2022.104331.

P. Flores-Pérez, N. Gerig, M. I. Cabrera-López, J. L. de Unzueta-Roch, T. del Rosal, and C. Calvo, “Acute bronchiolitis during the COVID-19 pandemic,” Enfermedades Infecc. y Microbiol. Clin. (English ed.), vol. 40, no. 10, pp. 572–575, 2022, doi: 10.1016/j.eimce.2021.06.005.

BPS Sumatera-Selatan, Provinsi Sumatera Selatan Dalam Angka 2022. 2022.

Corona.sumselprov.go.id, “Sumatera Selatan Tanggap COVID-19.”http://corona.sumselprov.go.id/index.php?module=

home&id=1 (accessed Aug. 30, 2022).

D. N. P. Sari and Y. Sukestiyarno, “Analisis Cluster dengan Metode K-Means pada Persebaran Kasus Covid-19 Berdasarkan Provinsi di Indonesia,” Prism. Pros. Semin. Nas. Mat., vol. 4, pp. 602–610, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/.

A. Sucipto, “Klasterisasi Calon Mahasiswa Baru Menggunakan Algoritma K-Means,” J. Sci. Tech, vol. 5, no. 2, pp. 50–56, 2019.

N. Ulinnuh and R. Veriani, “Analisis Cluster dalam Pengelompokan Provinsi di Indonesia Berdasarkan Variabel Penyakit Menular Menggunakan Metode Complete Linkage , Average Linkage dan Ward,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 5, no. 1, pp. 101–108, 2020.

H. Fransiska, “Clustering Provinces in Indonesia Based on Daily Covid-19 Cases Clustering Provinces in Indonesia Based on Daily Covid-19 Cases,” J. Phys. Conf. Ser., no. March, 2021, doi: 10.1088/1742-6596/1863/1/012015.

dinkes.sumselprov.go.id, “13 Terkonfirmasi Covid19 Sumsel 28/9/2022 di Sumatera Selatan.” https://dinkes.sumselprov.go.id/2022/09/kata-kemkes-ada-enam-aktivitas-fisik-yang-pas-untuk-dilakukan-13-terkonfirmasi-covid19-sumsel-28-9-2022/ (accessed Sep. 30, 2022).

Basri and Syarli, “Ahp-Standar Score: Pendekatan Baru Dalam Sistem Pemeringkatan,” J. Keteknikan dan Sains – LPPM UNHAS, vol. 1, no. 1, pp. 1–6, 2018.

A. Aditya et al., “Perbandingan pengukuran jarak Euclidean dan Gower pada klaster k-medoids,” J. Teknol. dan Sist. Komput., vol. 9, no. 1, pp. 1–7, 2021, doi: 10.14710/jtsiskom.2021.13747.

A. Inguanzo et al., “Hierarchical cluster analysis of multimodal imaging data identifies brain atrophy and cognitive patterns in Parkinson’s disease,” Park. Relat. Disord., vol. 82, pp. 16–23, 2021, doi: 10.1016/j.parkreldis.2020.11.010.

A. Caggiano, F. Napolitano, and R. Teti, “Hierarchical cluster analysis for pattern recognition of process conditions in die sinking EDM process monitoring,” Procedia CIRP, vol. 99, pp. 514–519, 2021, doi: 10.1016/j.procir.2021.03.071.

L. P. W. Adnyani and P. R. Sihombing, “Analisis Cluster Time Series Dalam Pengelompokan Provinsi Di Indonesia Berdasarkan Nilai PDRB,” Lppm Bina Bangsa, vol. 1, no. 1, pp. 47–54, 2021, doi: 10.46306/bay.v1i1.5.

Published
2023-09-30
How to Cite
[1]
A. Saragih, D. Sukanda, and N. Eliyati, “CLUSTERIZATION OF REGION IN SOUTH SUMATERA BASED ON COVID-19 CASE DATA”, BAREKENG: J. Math. & App., vol. 17, no. 3, pp. 1257-1264, Sep. 2023.