IMPLEMENTATION OF THE TAGUCHI METHOD WITH TRAPEZOIDAL FUZZY NUMBER IN THE TOFUPRODUCTION PROCESS

  • Djihad Wungguli Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Indonesia
  • Jefri N. Isa Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Indonesia
  • Muhammad Rezky Friesta Payu Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Indonesia
  • Nurwan Nurwan Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Indonesia
  • Salmun K Nasib Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Indonesia
  • Stella Junus Department of Industrial Engineering, Faculty of Engineering, Universitas Negeri Gorontalo, Indonesia
Keywords: Taguchi Design, Fuzzy Logic, Optimization, Membership Function

Abstract

Indonesians consume more tofu every week, proving that it is one of the country's most well-liked and potential food ingredients. Therefore, several people benefit from this positive potential as a business opportunity and improve the quality of their products as part of a market competition strategy. This study uses the Taguchi method and fuzzy logic to optimize the multi-response characteristic tofu production process. These multi-responses include water and protein content, each of which has the characteristics of "nominal is best" and "larger is better". In this experiment, three independent variables were varied: soybean soaking time, soybean porridge boiling time, and tofu lump pressing time. The experimental design used is the orthogonal matrix L9. This study aims to determine the optimal combination of independent variables and determine the contribution of each varible to the multi-response of water content and protein content simultaneously. The findings indicated that soaking soybeans for 4 hours, boiling soybean porridge for 70 minutes, and pressing tofu lumps for 20 minutes are the ideal settings to produce optimal multi-response simultaneously. Additionally, the duration of soybeans soaking contributed 14,74%, the duration of boiling soybean porridge contributed 29,50%, and the duration of pressing lumps of tofu contributed 38,18% to the multi-response.

Downloads

Download data is not yet available.

References

Kementerian Pertanian Indonesia, “Produksi Kedelai Diproyeksi Turun hingga 2024,” 2021. https://databoks.katadata.co.id/datapublish/2021/06/04/produksi-kedelai-diproyeksi-turun-hingga-2024 (accessed Jul. 11, 2022).

Badan Pusat Statistik, “Impor Kedelai Menurut Negara Asal Utama, 2017-2021,” 2022. https://www.bps.go.id/statictable/2019/02/14/2015/impor-kedelai-menurut-negara-asal-utama-2017-2021.html (accessed Jul. 11, 2022).

Badan Pusat Statistik, “Konsumsi Tahu dan Tempe per Kapita di Indonesia Naik pada 2021,” 2022. https://www.bps.go.id/statictable/2014/09/08/950/rata-rata-konsumsi-per-kapita-seminggu-beberapa-macam-bahan-makanan-penting-2007-2017.html (accessed Jul. 11, 2022).

A. Yani and J. S. Utomo, “Evaluasi Mutu Tahu dari Beberapa Varietas Unggul Kedelai dibuat oleh Beberapa Pengrajin,” Bul. Palawija, vol. 17, no. 1, pp. 21–29, 2019.

S. D. Saputri and S. A. K., “Pengaruh Lama Pemasakan Dan Temperatur Pemasakan Kedelai Terhadap Proses Ekstraksi Protein Kedelai Untuk Pembuatan Tahu,” Semin. Tugas Akhir S1 Jur. Tek. Kim. UNDIP, 2009, [Online]. Available: http://eprints.undip.ac.id/1473/

N. Hairiyah and R. R. Amalia, “Pengendalian Kualitas Produk Tahu Menggunakan Metode Six Sigma di UD. Sumber Urip,” AGROINTEK, vol. 14, no. 1, pp. 14–23, Mar. 2020, doi: 10.21107/agrointek.v14i1.5222.

N. Nagaraju, S. Venkatesu, and N. G. Ujwala, “Optimization of Process Parameters of EDM Process Using Fuzzy Logic and Taguchi Methods for Improving Material Removal Rate and Surface Finish,” Mater. Today Proc., vol. 5, no. 2, pp. 7420–7428, 2018, doi: 10.1016/j.matpr.2017.11.413.

I. Soejanto, Desain Eksperimen Dengan Metode Taguchi. Yogyakarta: Graha Ilmu, 2009.

R. Kumar, N. R. Jesudoss Hynes, C. I. Pruncu, and J. A. Jennifa Sujana, “Multi-objective optimization of green technology thermal drilling process using grey-fuzzy logic method,” J. Clean. Prod., vol. 236, p. 117711, 2019, doi: 10.1016/j.jclepro.2019.117711.

Pathya and B. O. P. Soepangkat, “Optimasi Multirespon Proses Wire-EDM Menggunakan Metode Taguchi Logika Fuzzy,” J. Tek. Mesin, vol. 1, no. 1, pp. 6–11, 2017.

C. B. Maheswaran, R. Jayendra Bharathi, S. Paul Joshua, and A. Kumar Srirangan, “Optimisation of laser welding parameters for incoloy 800HT joints using Grey-fuzzy Taguchi approach,” Mater. Today Proc., vol. 5, no. 6, pp. 14237–14243, 2018, doi: 10.1016/j.matpr.2018.03.004.

S. Kusumadewi and H. Purnomo, Aplikasi Logika Fuzzy untuk Pendukung Keputusan, 2nd ed. Yogyakarta: Graha Ilmu, 2010.

Y. R. Sari and M. Rani, “Penerapan Logika Fuzzy Metode Mamdani dalam Menyelesaikan Masalah Produksi Garam Nasional,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 1, pp. 341–356, 2021, doi: 10.35957/jatisi.v8i1.647.

S. Winarni and E. Supartini, “Penerapan Metode Taguchi Fuzzy-Logic Dalam Optimasi Kadar Besi Pada Proses Magnetic Separation,” J. Stat. Teor. dan Apl., vol. 12, no. 2, pp. 41–50, 2018.

W. Widyawati, Aviasti and D. S. Mulyati, “Perbaikan Kualitas Produk Tahu dengan Menggunakan Metode Taguchi,” Prosiding Teknik Industri, vol. 7, no. 1, 2021.

M. A. R. Mayurfan, D. and K. , “Pengendalian Mutu tahu dengan Aplikasi Diagram Fishbone dan Pareto pada UD. Berkah Lestari Kecamatan Adiwerna Kabupaten Tegal,” Agrista, vol. 9, no. 4, pp. 89-102, 2021.

R. A. Damaris and B. O. P. Soepangkat, “Optimasi Kuat Tekan dan Daya Serap Air dari Batako yang Menggunakan Botton Ash dengan Pendekatan Respon Serentak,” no. 1982, pp. 1–9, 2011.

G. S. Waghmare and R. R. Arakerimath, “Prediction and Optimization of Multipoint Dimple Sheet Forming of Structural Steel using Taguchi Method,” Mater. Today Proc., vol. 45, no. 6, pp. 5102–5107, 2021, doi: 10.1016/j.matpr.2020.12.1243.

M. Hoseinpour-Lonbar, M. Z. Alavi, and M. Palassi, “Selection of asphalt mix with optimal fracture properties at intermediate temperature using Taguchi method for design of experiment,” Constr. Build. Mater., vol. 262, p. 120601, 2020, doi: 10.1016/j.conbuildmat.2020.120601.

W. H. Chen, C. M. Chang, J. K. Mutuku, S. S. Lam, and W. J. Lee, “Analysis of microparticle deposition in the human lung by taguchi method and response surface methodology,” Environ. Res., vol. 197, no. March, p. 110975, 2021, doi: 10.1016/j.envres.2021.110975.

J. Suthar, S. N. Teli, and A. Murumkar, “Drilling process improvement by Taguchi method,” Mater. Today Proc., vol. 47, no. xxxx, pp. 2814–2819, 2021, doi: 10.1016/j.matpr.2021.03.533.

K. Abd, K. Abhary, and R. Marian, “Multi-objective optimisation of dynamic scheduling in robotic flexible assembly cells via fuzzy-based Taguchi approach,” Comput. Ind. Eng., vol. 99, pp. 250–259, 2016, doi: 10.1016/j.cie.2016.07.028.

T. N. Tsai and M. Liukkonen, “Robust parameter design for the micro-BGA stencil printing process using a fuzzy logic-based Taguchi method,” Appl. Soft Comput. J., vol. 48, pp. 124–136, 2016, doi: 10.1016/j.asoc.2016.06.020.

Published
2023-09-30
How to Cite
[1]
D. Wungguli, J. Isa, M. Payu, N. Nurwan, S. Nasib, and S. Junus, “IMPLEMENTATION OF THE TAGUCHI METHOD WITH TRAPEZOIDAL FUZZY NUMBER IN THE TOFUPRODUCTION PROCESS”, BAREKENG: J. Math. & App., vol. 17, no. 3, pp. 1313-1324, Sep. 2023.