FORECASTING THE NUMBER OF FOREIGN TOURISM IN BALI USING THE HYBRID HOLT-WINTERS-ARTIFICIAL NEURAL NETWORK METHOD

  • M. Al Haris Statistics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Muhammadiyah Semarang, Indonesia
  • Laily Himmaturrohmah Statistics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Muhammadiyah Semarang, Indonesia
  • Indah Manfaati Nur Statistics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Muhammadiyah Semarang, Indonesia
  • Nun Maulida Suci Ayomi Agribusiness Study Program, Faculty of Economics, Universitas Muhammadiyah Semarang, Indonesia
Keywords: Artificial Neural Network, Holt-Winters, Total of International Tourists in Bali

Abstract

Bali was one of the destinations frequently visited by tourists because it had natural beauty, especially in the tourism sector. The number of foreign tourists coming to Bali until 2019 had increased, but there had been a very significant decrease in 2020. Forecasting the number of tourists coming to Bali in the future was needed to provide input or recommendations to the government and business people in anticipating decisions taken in the process of developing the tourism sector in Bali. One of the forecasting methods that can be used was the Holt-Winters method. The Holt-Winters method was part of Exponential Smoothing which is based on smoothing stationary, trend and seasonal elements. However, the Holt-Winters method can only capture linear patterns, so a method was needed that can capture non-linear patterns. The Artificial Neural Network method was proposed to overcome the shortcomings of the Holt-Winters Method. This research was focused on the number of foreign tourists visiting Bali using the Hybrid Holt Winters-Artificial Neural Network method. The results showed that the data on the number of foreign tourists fluctuated every month. The best method for predicting the number of foreign tourists was the Hybrid Holt-Winters (α = 0.987, β = 0.000001, and γ = 1)-Artificial Neural Network (12-15-1) because it has the best accuracy as indicated by the MAD value of 0.036684, MSE 0.01098698 and MAPE 6.30417%.

Downloads

Download data is not yet available.

References

Sukarna, M. Abdy, Aswi, and N. Kaito, “Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Sulawesi Selatan Menggunakan Model ARFIMA,” JMathCoS J. Math. Comput. Stat., vol. 5, no. 2, pp. 129–139, 2022.

I. Rochayati, U. D. Syafitri, and I. M. Sumertajaya, “Kajian Model Peramalan Kunjungan Wisatawan Mancanegara dan di Bandara Kualanamu Medan Tanpa dan dengan Kovariat,” Indones. J. Stat. Its Appl., vol. 3, no. 1, pp. 18–32, 2019.

A. Aryati, I. Purnamasari, and Y. N. Nasution, “Peramalan dengan Menggunakan Metode Holt-Winters Exponential Smoothing (Studi Kasus: Jumlah Wisatawan Mancanegara yang Berkunjung Ke Indonesia),” J. EKSPONENSIAL, vol. 11, no. 1, pp. 99–106, 2020.

E. N. Sari, B. Susanto, and A. Setiawan, “Perbandingan Hasil Peramalan Jumlah Wisatawan Mancanegara dengan Metode Box-Jenkins dan Exponential Smoothing,” JAMBURA J. Probab. Stat., vol. 2, no. 1, pp. 1–13, 2021.

I. K. R. Wiranata, G. K. Gandhiadi, and L. P. I. Harini, “Peramalan Kunjungan Wisatawan Mancanegara Ke Provinsi Bali Menggunakan Metode Artificial Neural Network,” E-Jurnal Mat., vol. 9, no. 4, p. 213, 2020, doi: 10.24843/mtk.2020.v09.i04.p301.

Badan Pusat Statistik Provinsi Bali, Statistik Wisatawan Mancanegara ke Bali 2020. 2020.

S. Herawati, “Peramalan Kunjungan Wisatawan Mancanegara Menggunakan Generalized Regression Neural Networks,” J. INFOTEL - Inform. Telekomun. Elektron., vol. 8, no. 1, pp. 35–39, 2016, doi: 10.20895/infotel.v8i1.49.

M. A. N. Sari, I. W. Sumarjaya, and M. Susilawati, “Peramalan Jumlah Kunjungan Wisatawan Mancanegara ke Bali Menggunakan Metode Singular Spectrum Analysis,” E-Jurnal Mat., vol. 8, no. 4, pp. 303–308, 2019, doi: 10.24843/mtk.2019.v08.i04.p269.

R. Novidianto, “Model Hybrid Nonlinier Regression Logistic (NLR)–Double Exponensial Smoothing (DES) dan Penerapannya pada Jumlah Kasus Kumulatif Covid-19 di Indonesia dan Belanda,” JAMBURA J. Probab. Stat., vol. 2, no. 1, pp. 35–47, 2021.

S. N. Janah, W. Sulandari, and S. B. Wiyono, “Penerapan Model Hybrid ARIMA Backpropagation untuk Peramalan Harga Gabah Indonesia,” Media Stat., vol. 7, no. 2, pp. 63–69, 2014, doi: 10.14710/medstat.7.2.63-69.

G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks: The state of the art,” Int. J. Forecast., vol. 14, no. 1, pp. 35–62, 1998, doi: 10.1016/S0169-2070(97)00044-7.

G. E. B. Seyoga, I. K. G. D. Putra, and N. K. D. Rusjayanthi, “A Comparison Between Backpropagation, Holt-Winter, and Polynomial Regression Methods in Forecasting Dog Bite Cases in Bali,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 9, no. 3, pp. 251–262, 2021, doi: 10.24843/jim.2021.v09.i03.p06.

R. N. Puspita, “Perbandingan Metode Double Exponential Smoothing dan Triple Exponential Smoothing pada Peramalan Nilai Ekspor di Indonesia,” JAMBURA J. Probab. Stat., vol. 3, no. 2, pp. 141–150, 2022.

A. Razak and E. Riksakomara, “Peramalan Jumlah Produksi Ikan dengan Menggunakan Backpropagation Neural Network (Studi Kasus: UPTD Pelabuhan Perikanan Banjarmasin,” J. Tek. ITS, vol. 6, no. 1, pp. 142–148, 2017, doi: 10.12962/j23373539.v6i1.22129.

A. K. Smith and J. N. D. Gupta, “Neural networks in business: techniques and applications for the operation researcher,” Comput. Oper. Res., vol. 27, no. 11–12, pp. 1023–1044, 2000.

S. N. Rinjani, A. Hoyyi, and Suparti, “Pemodelan Fungsi Transfer dan Backpropagation Neural Network untuk Peramalan Harga Emas (Studi Kasus Harga Emas Bulan Juli 2007 sampai Februari 2019),” J. Gaussian, vol. 8, no. 4, pp. 474–485, 2019, doi: 10.14710/j.gauss.v8i4.26727.

Saduf and M. A. Wani, “Comparative Study of High Speed Back-Propagation Learning Algorithms,” Int. J. Mod. Educ. Comput. Sci., vol. 12, no. 5, pp. 34–40, 2014, doi: 10.5815/ijmecs.2014.12.05.

H. Rodriguez, V. Puig, J. J. Flores, and R. Lopez, “Combined Holt-Winters and GA trained ANN Approach for Sensor Validation and Reconstruction: Application to Water Demand Flowmeters,” in Conference on Control and Fault-Tolerant Systems, SysTol, 2016, vol. 3, pp. 202–207, doi: 10.1109/SYSTOL.2016.7739751.

I. K. Hasan and I. Djakaria, “Perbandingan Model Hybrid ARIMA-NN dan Hybrid ARIMA-GARCH untuk Peramalan Data Nilai Tukar Petani di Provinsi Gorontalo,” J. Stat. dan Apl., vol. 5, no. 2, pp. 155–165, 2021, doi: 10.21009/jsa.05204.

I. N. Hidayati, M. Al Haris, and T. W. Utami, “Metode Average Based Fuzzy Time Series Markov Chain pada Data Laju Inflasi di Indonesia,” in Seminar Nasional UNIMUS, 2022, pp. 581–597.

S. W. Utami, I. M. Nur, and M. Al Haris, “Peramalan Nilai Ekspor Provinsi Jawa Tengah dengan Metode Fuzzy Time Series Berbasis Algoritma Novel,” J Stat. J. Ilm. Teor. dan Apl. Stat., vol. 15, no. 1, pp. 195–202, 2022.

Published
2023-06-11
How to Cite
[1]
M. Haris, L. Himmaturrohmah, I. Nur, and N. Ayomi, “FORECASTING THE NUMBER OF FOREIGN TOURISM IN BALI USING THE HYBRID HOLT-WINTERS-ARTIFICIAL NEURAL NETWORK METHOD”, BAREKENG: J. Math. & App., vol. 17, no. 2, pp. 1027-1038, Jun. 2023.