FORECASTING THE NUMBER OF FOREIGN TOURISM IN BALI USING THE HYBRID HOLT-WINTERS-ARTIFICIAL NEURAL NETWORK METHOD
Abstract
Bali was one of the destinations frequently visited by tourists because it had natural beauty, especially in the tourism sector. The number of foreign tourists coming to Bali until 2019 had increased, but there had been a very significant decrease in 2020. Forecasting the number of tourists coming to Bali in the future was needed to provide input or recommendations to the government and business people in anticipating decisions taken in the process of developing the tourism sector in Bali. One of the forecasting methods that can be used was the Holt-Winters method. The Holt-Winters method was part of Exponential Smoothing which is based on smoothing stationary, trend and seasonal elements. However, the Holt-Winters method can only capture linear patterns, so a method was needed that can capture non-linear patterns. The Artificial Neural Network method was proposed to overcome the shortcomings of the Holt-Winters Method. This research was focused on the number of foreign tourists visiting Bali using the Hybrid Holt Winters-Artificial Neural Network method. The results showed that the data on the number of foreign tourists fluctuated every month. The best method for predicting the number of foreign tourists was the Hybrid Holt-Winters (α = 0.987, β = 0.000001, and γ = 1)-Artificial Neural Network (12-15-1) because it has the best accuracy as indicated by the MAD value of 0.036684, MSE 0.01098698 and MAPE 6.30417%.
Downloads
References
Sukarna, M. Abdy, Aswi, and N. Kaito, “Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Sulawesi Selatan Menggunakan Model ARFIMA,” JMathCoS J. Math. Comput. Stat., vol. 5, no. 2, pp. 129–139, 2022.
I. Rochayati, U. D. Syafitri, and I. M. Sumertajaya, “Kajian Model Peramalan Kunjungan Wisatawan Mancanegara dan di Bandara Kualanamu Medan Tanpa dan dengan Kovariat,” Indones. J. Stat. Its Appl., vol. 3, no. 1, pp. 18–32, 2019.
A. Aryati, I. Purnamasari, and Y. N. Nasution, “Peramalan dengan Menggunakan Metode Holt-Winters Exponential Smoothing (Studi Kasus: Jumlah Wisatawan Mancanegara yang Berkunjung Ke Indonesia),” J. EKSPONENSIAL, vol. 11, no. 1, pp. 99–106, 2020.
E. N. Sari, B. Susanto, and A. Setiawan, “Perbandingan Hasil Peramalan Jumlah Wisatawan Mancanegara dengan Metode Box-Jenkins dan Exponential Smoothing,” JAMBURA J. Probab. Stat., vol. 2, no. 1, pp. 1–13, 2021.
I. K. R. Wiranata, G. K. Gandhiadi, and L. P. I. Harini, “Peramalan Kunjungan Wisatawan Mancanegara Ke Provinsi Bali Menggunakan Metode Artificial Neural Network,” E-Jurnal Mat., vol. 9, no. 4, p. 213, 2020, doi: 10.24843/mtk.2020.v09.i04.p301.
Badan Pusat Statistik Provinsi Bali, Statistik Wisatawan Mancanegara ke Bali 2020. 2020.
S. Herawati, “Peramalan Kunjungan Wisatawan Mancanegara Menggunakan Generalized Regression Neural Networks,” J. INFOTEL - Inform. Telekomun. Elektron., vol. 8, no. 1, pp. 35–39, 2016, doi: 10.20895/infotel.v8i1.49.
M. A. N. Sari, I. W. Sumarjaya, and M. Susilawati, “Peramalan Jumlah Kunjungan Wisatawan Mancanegara ke Bali Menggunakan Metode Singular Spectrum Analysis,” E-Jurnal Mat., vol. 8, no. 4, pp. 303–308, 2019, doi: 10.24843/mtk.2019.v08.i04.p269.
R. Novidianto, “Model Hybrid Nonlinier Regression Logistic (NLR)–Double Exponensial Smoothing (DES) dan Penerapannya pada Jumlah Kasus Kumulatif Covid-19 di Indonesia dan Belanda,” JAMBURA J. Probab. Stat., vol. 2, no. 1, pp. 35–47, 2021.
S. N. Janah, W. Sulandari, and S. B. Wiyono, “Penerapan Model Hybrid ARIMA Backpropagation untuk Peramalan Harga Gabah Indonesia,” Media Stat., vol. 7, no. 2, pp. 63–69, 2014, doi: 10.14710/medstat.7.2.63-69.
G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks: The state of the art,” Int. J. Forecast., vol. 14, no. 1, pp. 35–62, 1998, doi: 10.1016/S0169-2070(97)00044-7.
G. E. B. Seyoga, I. K. G. D. Putra, and N. K. D. Rusjayanthi, “A Comparison Between Backpropagation, Holt-Winter, and Polynomial Regression Methods in Forecasting Dog Bite Cases in Bali,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 9, no. 3, pp. 251–262, 2021, doi: 10.24843/jim.2021.v09.i03.p06.
R. N. Puspita, “Perbandingan Metode Double Exponential Smoothing dan Triple Exponential Smoothing pada Peramalan Nilai Ekspor di Indonesia,” JAMBURA J. Probab. Stat., vol. 3, no. 2, pp. 141–150, 2022.
A. Razak and E. Riksakomara, “Peramalan Jumlah Produksi Ikan dengan Menggunakan Backpropagation Neural Network (Studi Kasus: UPTD Pelabuhan Perikanan Banjarmasin,” J. Tek. ITS, vol. 6, no. 1, pp. 142–148, 2017, doi: 10.12962/j23373539.v6i1.22129.
A. K. Smith and J. N. D. Gupta, “Neural networks in business: techniques and applications for the operation researcher,” Comput. Oper. Res., vol. 27, no. 11–12, pp. 1023–1044, 2000.
S. N. Rinjani, A. Hoyyi, and Suparti, “Pemodelan Fungsi Transfer dan Backpropagation Neural Network untuk Peramalan Harga Emas (Studi Kasus Harga Emas Bulan Juli 2007 sampai Februari 2019),” J. Gaussian, vol. 8, no. 4, pp. 474–485, 2019, doi: 10.14710/j.gauss.v8i4.26727.
Saduf and M. A. Wani, “Comparative Study of High Speed Back-Propagation Learning Algorithms,” Int. J. Mod. Educ. Comput. Sci., vol. 12, no. 5, pp. 34–40, 2014, doi: 10.5815/ijmecs.2014.12.05.
H. Rodriguez, V. Puig, J. J. Flores, and R. Lopez, “Combined Holt-Winters and GA trained ANN Approach for Sensor Validation and Reconstruction: Application to Water Demand Flowmeters,” in Conference on Control and Fault-Tolerant Systems, SysTol, 2016, vol. 3, pp. 202–207, doi: 10.1109/SYSTOL.2016.7739751.
I. K. Hasan and I. Djakaria, “Perbandingan Model Hybrid ARIMA-NN dan Hybrid ARIMA-GARCH untuk Peramalan Data Nilai Tukar Petani di Provinsi Gorontalo,” J. Stat. dan Apl., vol. 5, no. 2, pp. 155–165, 2021, doi: 10.21009/jsa.05204.
I. N. Hidayati, M. Al Haris, and T. W. Utami, “Metode Average Based Fuzzy Time Series Markov Chain pada Data Laju Inflasi di Indonesia,” in Seminar Nasional UNIMUS, 2022, pp. 581–597.
S. W. Utami, I. M. Nur, and M. Al Haris, “Peramalan Nilai Ekspor Provinsi Jawa Tengah dengan Metode Fuzzy Time Series Berbasis Algoritma Novel,” J Stat. J. Ilm. Teor. dan Apl. Stat., vol. 15, no. 1, pp. 195–202, 2022.
Copyright (c) 2023 M. Al Haris, Laily Himmaturrohmah, Indah Manfaati Nur, Nun Maulida Suci Ayomi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.