THE POWER GRAPH REPRESENTATION FOR INTEGER MODULO GROUP WITH POWER PRIME ORDER

  • Lalu Riski Wirendra Putra Department of Mathematics, Faculty of Mathematics and Natural Science, University of Mataram, Indonesia
  • Zata Yumni Awanis Department of Mathematics, Faculty of Mathematics and Natural Science, University of Mataram, Indonesia
  • Salwa Salwa Department of Mathematics, Faculty of Mathematics and Natural Science, University of Mataram, Indonesia
  • Qurratul Aini Department of Mathematics, Faculty of Mathematics and Natural Science, University of Mataram, Indonesia
  • I Gede Adhitya Wisnu Wardhana Department of Mathematics, Faculty of Mathematics and Natural Science, University of Mataram, Indonesia
Keywords: Power graph, Group, Power prime, Integer modulo

Abstract

There are many applications of graphs in various fields. Starting from chemical problems, such as the molecular shape of a compound to internet network problems, we can also use graphs to depict the abstract concept of a mathematical structure.. Groups in Algebra can be represented as a graph. This is interesting because Groups are abstract objects in mathematics. The graph of a group shows the physical form of the group by looking at the relationship between its elements. So, we can know the distance of the elements. In 2013, Abawajy et al. conducted studies related to power graphs. Power graph representation of groups of integers modulo with the order of prime numbers has been carried out in 2022 by Syechah, et al. In this article, the author provides the properties of a power graph on a group of integers modulo with the order of powers of prime numbers.

Downloads

References

A. G. Syarifudin, Nurhabibah, D. P. Malik, and I. G. A. W. dan Wardhana, “Some characterizatsion of coprime graph of dihedral group D2n,” J Phys Conf Ser, vol. 1722, no. 1, 2021, doi: 10.1088/1742-6596/1722/1/012051.

X. Ma, H. Wei, and L. Yang, “The Coprime graph of a group,” International Journal of Group Theory, vol. 3, no. 3, pp. 13–23, 2014, doi: 10.22108/ijgt.2014.4363.

N. Nurhabibah, A. G. Syarifudin, and I. G. A. W. Wardhana, “Some Results of The Coprime Graph of a Generalized Quaternion Group Q_4n,” InPrime: Indonesian Journal of Pure and Applied Mathematics, vol. 3, no. 1, pp. 29–33, 2021, doi: 10.15408/inprime.v3i1.19670.

M. R. Gayatri, Q. Aini, Z. Y. Awanis, S. Salwa, and I. G. A. W. Wardhana, “The Clique Number and The Chromatics Number Of The Coprime Graph for The Generalized Quarternion Group,” JTAM (Jurnal Teori dan Aplikasi Matematika), vol. 7, no. 2, pp. 409–416, 2023, doi: 10.31764/jtam.v7i2.13099.

N. Nurhabibah, I. G. A. W. Wardhana, and N. W. Switrayni, “NUMERICAL INVARIANTS OF COPRIME GRAPH OF A GENERALIZED QUATERNION GROUP,” J. Indones. Math. Soc, vol. 29, no. 01, pp. 36–44, 2023.

F. Mansoori, A. Erfanian, and B. Tolue, “Non-coprime graph of a finite group,” AIP Conf Proc, vol. 1750, no. June 2016, 2016, doi: 10.1063/1.4954605.

Nurhabibah, D. P. Malik, H. Syafitri, and I. G. A. W. Wardhana, “Some results of the non-coprime graph of a generalized quaternion group for some n,” AIP Conf Proc, vol. 2641, no. December 2022, p. 020001, 2022, doi: 10.1063/5.0114975.

W. U. Misuki, G. A. W. Wardhana, and N. W. Switrayni, “Some Characteristics of Prime Cyclic Ideal On Gaussian Integer Ring Modulo,” IOP Conf Ser Mater Sci Eng, vol. 1115, no. 1, p. 012084, 2021, doi: 10.1088/1757-899X/1115/1/012084.

D. S. Ramdani, I. G. A. W. Wardhana, and Z. Y. Awanis, “THE INTERSECTION GRAPH REPRESENTATION OF A DIHEDRAL GROUP WITH PRIME ORDER AND ITS NUMERICAL INVARIANTS,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 3, pp. 1013–1020, Sep. 2022, doi: 10.30598/barekengvol16iss3pp1013-1020.

S. Akbari, F. Heydari, and M. Maghasedi, “The intersection graph of a group,” J Algebra Appl, vol. 14, no. 5, Jun. 2015, doi: 10.1142/S0219498815500656.

N. Nurhabibah, A. G. Syarifudin, I. G. A. W. Wardhana, and Q. Aini, “The Intersection Graph of a Dihedral Group,” Eigen Mathematics Journal, vol. 4, no. 2, pp. 68–73, 2021, doi: 10.29303/emj.v4i2.119.

J. Abawajy, A. Kelarev, and M. Chowdhury, “Power Graphs: A Survey,” 2013. [Online]. Available: www.ejgta.org

E. Y. Asmarani, A. G. Syarifudin, I. G. A. W. Wardhana, and N. W. Switrayni, “The Power Graph of a Dihedral Group,” Eigen Mathematics Journal, vol. 4, no. 2, pp. 80–85, 2021, doi: 10.29303/emj.v4i2.117.

B. N. Syechah, E. Y. Asmarani, A. G. Syarifudin, D. P. Anggraeni, and I. G. A. W. W. Wardhana, “Representasi Graf Pangkat Pada Grup Bilangan Bulat Modulo BerordeBilanganPrima,” Evolusi: Journal of Mathematics and Sciences, vol. 6, no. 2, pp. 99–104, 2022.

T. Chelvam and M. Sattanathan, “Power graph of finite abelian groups,” Algebra and Discrete Mathematics, vol. 16, no. 1, pp. 33–41, 2013.

J. H. Silverman, Abstract Algebra An Integrated Approach. 2022.

A. G. Syarifudin, I. G. A. W. Wardhana, N. W. Switrayni, and Q. Aini, “The Clique Numbers and Chromatic Numbers of The Coprime Graph of a Dihedral Group,” IOP Conf Ser Mater Sci Eng, vol. 1115, no. 1, p. 012083, 2021, doi: 10.1088/1757-899x/1115/1/012083.

R. G. Godsil C., Algebraic graph theory. Springer, 2001.

M. N. Husni, H. Syafitri, A. M. Siboro, A. G. Syarifudin, Q. Aini, and I. G. A. W. Wardhana, “THE HARMONIC INDEX AND THE GUTMAN INDEX OF COPRIME GRAPH OF INTEGER GROUP MODULO WITH ORDER OF PRIME POWER,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 3, pp. 961–966, Sep. 2022, doi: 10.30598/barekengvol16iss3pp961-966.

J. P. Mazorodze, S. Mukwembi, and T. Vetrík, “The Gutman index and the edge-Wiener index of graphs with given vertex-connectivity,” DiscussionesMathematicae - Graph Theory, vol. 36, no. 4, pp. 867–876, 2016, doi: 10.7151/dmgt.1900.

N. I. Alimon, N. H. Sarmin, and A. Erfanian, “The Szeged and Wiener indices for coprime graph of dihedral groups,” in AIP Conference Proceedings, American Institute of Physics Inc., Oct. 2020. doi: 10.1063/5.0018270.

Published
2023-09-30
How to Cite
[1]
L. R. W. Putra, Z. Y. Awanis, S. Salwa, Q. Aini, and I. G. A. Wardhana, “THE POWER GRAPH REPRESENTATION FOR INTEGER MODULO GROUP WITH POWER PRIME ORDER”, BAREKENG: J. Math. & App., vol. 17, no. 3, pp. 1393-1400, Sep. 2023.