APPLICATION OF EXTREME LEARNING MACHINE METHOD ON STOCK CLOSING PRICE FORECASTING PT ANEKA TAMBANG (PERSERO) TBK
Abstract
Artificial neural networks are modeling methods that can capture complex input and output relationships. This method is widely used in forecasting and classification. However, in its application, there are some disadvantages in terms of low learning rate resulting in computational delay. Extreme Learning Machine (ELM) was introduced to overcome these problems. This method is believed to be able to produce more accurate forecasting results with a low level of forecasting error. In Indonesia, stocks are one of the most popular investments for investors. Stock prices tend to be volatile which is influenced by the amount of market supply and demand, so forecasting analysis is needed to minimize the risks that may occur. This research applies the ELM method to forecast the closing price of PT ANTM Tbk shares from January 1, 2018 - October 31, 2022. The data used is secondary data obtained from the official website https://id.investing.com. The ELM method is applied by dividing training data for ELM modeling and testing data used in the forecasting process. The model architecture of the ELM method uses a combination of inputs obtained from the PACF plot, hidden nodes with a range of 5-50, and one output layer. The results of this study show excellent forecasting accuracy in terms of forecasting. This is measured by the MAPE value of 0.0358. The architecture formed in the ELM process is one input, 31 hidden nodes, and one output. Forecasting the closing price of PT ANTM Tbk shares with 1-31-1 architecture produces a forecasting value that shows a low decline, but is quite stable.
Downloads
References
M. I. B. L. Dewi and N. L. P.Wiagustini, "Studi Faktor yang Memengaruhi Pengambilan Keputusan Investasi Saham pada Investor di Kota Denpasar," Buletin Studi Ekonomi, pp. 79-100, February 2022.
S. V. Dero, "Sistem Pendukung Keputusan Pemilihan Saham dengan Metode Electre," SINTAMA: Jurnal Sistem Informasi, Akuntansi, dan Manajemen, vol. 2, no. 6, pp. 324-336, September 2022.
M. I. Pratama, P. P. Adikara and S. Adinugroho, "Peramalan Harga Saham menggunakan Metode Extreme Learning Machine (ELM) Studi Kasus Bank Mandiri," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 3, pp. 5009-5014, November 2018.
Y. Ramadhani and A. Mubarok, "Analisis Time Series Prediksi Penutupan Harga Saham Antm. Jk dengan Algoritma SVM Model Regresi," Jurnal Responsif, vol. 1, no. 1, pp. 77-82, August 2019.
A. Lusiana and P. Yuliarty, "Penerapan Metode Peramalan (Forecasting) pada Permintaan Atap di PT X," Industri Inovatif-Jurnal Teknik Industri ITN Malang, vol. 10, no. 1, pp. 11–20, June 2020.
Q. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, no. 1–3, pp. 489–501, December 2006.
L. R. S. Wati, I. Cholissodin, and P. P. Adikara, "Implementasi Algoritme Extreme Learning Machine (ELM) untuk Prediksi Harga Emas bagi Investor," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3, pp. 2408-2415, March 2019.
J. Wang, S. Lu, S. H. Wang, and Y. D. Zhang, "A Review on Extreme Learning Machine," Multimedia Tools and Applications , vol. 81, pp. 41611-41660, May 2021.
Q. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: a new learning scheme of feedforward neural networks," IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary, vol. 2, pp. 985-990, August 2004.
A. N. Alfiyatin, W. F. Mahmudy, C. F. Ananda, and Y. P. Anggodo, "Penerapan Extreme Learning Machine (ELM) untuk Peramalan Laju Inflasi di Indonesia," Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 6, no. 2, pp. 179-186, February 2019.
V. V. Nurdiansyah, I. Chollisodin, and P. P. Adikara, "Klasifikasi Penyakit Tuberkulosis (TB) menggunakan Metode Extreme Learning Machine (ELM)," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 5, pp. 1387-1393, May 2020.
K. P. Dewi and A. Kudus, "Penerapan Metode Extreme Learning Machine pada Peramalan Jumlah Penumpang Penerbangan Domestik di Kepulauan Riau," Prosiding Statistika, vol. 7, no. 2, pp. 589-596, 2021.
B. K. Khotimah, "Kinerja Metode Extreme Learning Machine (ELM) pada Sistem Peramalan," Jurnal SimanteC, vol. 1, no. 3, pp. 190-195, December 2010.
I. Sungkawa and R. T. Megasari, "Penerapan Ukuran Ketepatan Nilai Ramalan Data Deret Waktu dalam Seleksi Model Peramalan Volume Penjualan PT Satriamandiri Citramulia," ComTech, vol. 2, no. 2, pp. 636-645, December 2011.
W. Hastomo, A. S. B. Karno, N. Kalbuana, E. Nisfiani, and L. Etp, "Optimasi Deep Learning untuk Prediksi Saham di Masa Pandemi Covid-19," JEPIN, vol. 7, no. 2, pp. 133-140, August 2021.
B. G. Prianda and E. Widodo, "Perbandingan Metode Seasonal ARIMA dan Extreme Learning Machine pada peramalan Jumlah Wisatawan Mancanegara ke Bali," BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 4, pp. 639–650, December 2021.
N. A. Izati, B. Warsito, and T. Widiharih, "Prediksi Harga Emas menggunakan Feed Forward Neural Network dengan Metode Extreme Learning Machine," Jurnal Gaussian, vol. 8, no. 2, pp. 171–183, May 2019.
S. N. Simbolon, J. Suprijadi, and R. Arisanti, "Penerapan Metode Extreme Learning Machine dalam Meramalkan Temperatur Udara Harian Kota Jakarta Pusat," Seminar Nasional Statistika X Universitas Padjadjaran, 2021.
Copyright (c) 2023 Rita Apriliyanti, Neva Satyahadewi, Wirda Andani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.