HIERARCHICAL CLUSTER ANALYSIS OF DISTRICTS/CITIES IN NORTH SUMATRA PROVINCE BASED ON HUMAN DEVELOPMENT INDEX INDICATORS USING PSEUDO-F

  • Neva Satyahadewi Statistics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia
  • Steven Jansen Sinaga Statistics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia
  • Hendra Perdana Statistics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia
Keywords: North Sumatra Province, Human development index indicators, Hierarchical Cluster, Pseudo-F statistics

Abstract

Human development is needed to create prosperity and assist development in a country. In realising this, it is necessary to first look at the quality of human resources in the country, so that its use is more targeted. The measure used as a standard for the success of human development in a country is the Human Development Index (HDI). HDI figure are calculated from the aggregation of three dimensions, namely longevity and healthy living, knowledge, and decent standard of living. The longevity and healthy living dimension is represented by the Life Expectancy. Average Years of Schooling (AYS) and Expected Years of Schooling (EYS) are indicators representing the knowledge dimension. Meanwhile, the decent standard of living dimension is represented by the Expenditure per Capita indicator. The purpose of this study is to explain the characteristics of each cluster obtained from Hierarchical Cluster Analysis of districts/cities in North Sumatra Province based on HDI indicators in 2022 using Pseudo-F. The methods used are Hierarchical Cluster Analysis and Calinski-Harabasz Pseudo-F Statistic. The main concept of this method is to determine the optimum number of groups. This research uses secondary data obtained from BPS. The sample size in this study are 33 districts/cities and the number of variables are 4 variables. The results of the analysis of this study are the formation of 4 clusters with the best method is Ward. Cluster 1 consists of four members, namely Medan City, Pematang Siantar City, Binjai City, and Padang Sidempuan City, where this cluster has a very high HDI level. Meanwhile, Cluster 4 is a cluster that has a very low HDI level with four cluster members, namely Nias District, South Nias District, North Nias District, and West Nias District. Thus, it can be seen that there is a gap between regions in North Sumatra Province.

Downloads

Download data is not yet available.

References

United Nations Development Programme (UNDP), Human Development Report 1990. Published for the United Nations Development Program (UNDP). New York, Oxford: Oxford University Press. 1990.

Badan Pusat Statistik, Indeks Pembangunan Manusia 2018.

Badan Pusat Statistik, Indeks Pembangunan Manusia 2006-2007.

S. Syalomitha R., S. Nadhira F., G. Anistya A., R. Raihana Z., J. Dominique P. S., C. Aliyyah N., A. Putri P., and T. Toharudin, “Pengelompokan Kabupaten/Kota di Provinsi Jawa Barat Menurut Indikator Indeks Pembangunan Manusia Tahun 2020,” Seminar Nasional Statistika X, 2021.

R. Putri and E. Widodo, “Analisis Klaster Hierarki untuk Pengelompokan Kabupaten/Kota di Jawa Tengah Berdasarkan Indikator Indeks Pembangunan Manusia (IPM) Tahun 2015,” Seminar Nasional Integrasi Matematika dan Nilai Islami, vol. 1, no. 1, 2017.

A. Mauludina and Setiawan, “Pengelompokan Kecamatan di Pulau Madura Berdasarkan Sektor Pertanian Sebelum dan Setelah Berdiri Jembatan Suramadu,” Sains dan Seni ITS, vol. 1, no. 1, 2012.

L. Ferreira and D. B. Hitchcock, “A Comparison of Hierarchical Methods for Clustering Functional Data,” Communications in Statistics: Simulation and Computation, vol. 38, no. 9, 2009, doi: 10.1080/03610910903168603.

Y. Yang, F. Wang, and F. Jiang, “A Topic Model for Hierarchical Documents,” 2017. doi: 10.1109/DSC.2016.97.

A. Kassambara and F. Mundt, “factoextra: Extract and Visualize the Results of Multivariate Data Analyses,” R Package Version 1.0.7., vol. 1, no. 3, 2020.

N. Asiska, N. Satyahadewi, and H. Perdana, “Pencarian Cluster Optimum Pada Single Linkage, Complete Linkage dan Average Linkage,” Bimaster: Buletin Ilmiah Matematika, Statistika, dan Terapannya, vol. 8, no. 3, 2019, doi: 10.26418/bbimst.v8i3.33173.

A. Alfira, F. Hermin, and E. D. Wiraningsih, “Analisis Hybrid Mutual Clustering Menggunakan Jarak Square Euclidean,” JMT: Jurnal Matematika dan Terapan, vol. 1, no. 1, 2017, doi: 10.21009/jmt.1.1.3.

M. W. Talakua, Z. A. Leleury, and A. W. Taluta, “Analisis Cluster dengan Menggunakan Metode K-Means untuk Pengelompokan Kabupaten/Kota di Povinsi Maluku Berdasarkan Indikator Indeks Pembangunan Manusia Tahun 2014,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 11, no. 2, 2017, doi: 10.30598/barekengvol11iss2pp119-128.

H. Wicaksono, “Penilaian Hasil Kegiatan Belajar Mahasiswa Menggunakan Metode Cluster Non-Hierarki,” Infoman’s, vol. 11, no. 1, 2017, doi: 10.33481/infomans.v11i1.16.

N. A. A. Lestari, M. N. Hayati, and F. D. T. Amijaya, “Analisis Cluster Pada Data Kategorik dan Numerik dengan Pendekatan Cluster Ensemble (Studi Kasus: Puskesmas di Provinsi Kalimantan Timur Kondisi Desember 2017),” Jurnal Eksponensial, vol. 11, 2020.

R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis: Pearson Prentice Hall. 2007.

A. A. Yusfar, M. A. Tiro, and Sudarmin, “Analisis Cluster Ensemble dalam Pengelompokan Kabupaten/Kota di Provinsi Sulawesi Selatan Berdasarkan Indikator Kinerja Pembangunan Ekonomi Daerah,” VARIANSI: Jurnal Statistics and Its Application on Teaching and Research, vol. 3, no. 1, 2020, doi: 10.35580/variansiunm14626.

M. Śmieja, D. Warszycki, J. Tabor, and A. J. Bojarski, “Asymmetric Clustering Index in a Case Study of 5-HT1A Receptor Ligands,” PLoS One, vol. 9, no. 7, 2014, doi: 10.1371/journal.pone.0102069.

M. Ackerman and S. Ben-David, “A Characterization of Linkage-based Hierarchical Clustering,” Journal of Machine Learning Research, vol. 17, 2016.

A. T. R. Dani, S. Wahyuningsih, and N. A. Rizki, “Penerapan Hierarchical Clustering Metode Agglomerative pada Data Runtun Waktu,” Jambura Journal of Mathematics, vol. 1, no. 2, 2019, doi: 10.34312/jjom.v1i2.2354.

A. C. Rencher and W. F. Christensen, Methods of Multivariate Analysis: Third Edition. 2012. doi: 10.1002/9781118391686.

A. Ruda, “Exploring Tourism Possibilities using GIS-based Spatial Association Methods,” Geographia Technica, vol. 11, no. 2, 2016, doi: 10.21163/GT_2016.112.09.

R. A. Purba, S. Suhada, F. Anggraini, D. Hartama, and S. Retno, “Penerapan K-Means Clustering Pada Pengelompokan Kabupaten/Kota Sumatera Utara Berdasarkan Indeks Pembangunan Manusia,” SmartAI Journal, vol. 1, no. 2, 2022.

Published
2023-09-30
How to Cite
[1]
N. Satyahadewi, S. Sinaga, and H. Perdana, “HIERARCHICAL CLUSTER ANALYSIS OF DISTRICTS/CITIES IN NORTH SUMATRA PROVINCE BASED ON HUMAN DEVELOPMENT INDEX INDICATORS USING PSEUDO-F”, BAREKENG: J. Math. & App., vol. 17, no. 3, pp. 1429-1438, Sep. 2023.