CROSS PRODUCT OF IDEAL FUZZY SEMIRING

  • Saman Abdurrahman Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat, Indonesia
Keywords: Semiring, Ideal, Cross product, Fuzzy ideal

Abstract

If one of the axioms in the ring, namely the inverse axiom in the addition operation, is omitted, it will produce another algebraic structure, namely a semiring. Analogous to a ring, there are zero elements, ideal (left/right) in a semiring, and the cross product of the semiring ideal. The analog of the fuzzy semiring has zero elements, ideal (left/right), and the cross product of the semiring fuzzy ideal associated with the membership value. This paper will discuss the cross-product of two (more) fuzzy ideals from a semiring. Furthermore, the cross-product of two (more) fuzzy ideals from a semiring will always be a semiring fuzzy ideal. But the converse is not necessarily true.

Downloads

Download data is not yet available.

References

M. P. Grillet, “On semirings which are embeddable into a semiring with identity,” Acta Math. Acad. Sci. Hungaricae, vol. 22, no. 3, pp. 305–307, 1971, doi: 10.1007/BF01896422.

D. F. Goguadze, “About the Notion of Semiring of Sets,” Math. Notes, vol. 74, no. 3, pp. 346–351, 2003, doi: 10.1023/A:1026102701631.

Y. Katsov, “Toward Homological Characterization of Semirings: Serre’s Conjecture and Bass’s Perfectness in a Semiring Context,” Algebr. universalis, vol. 52, no. 2, pp. 197–214, 2005, doi: 10.1007/s00012-004-1866-0.

E. M. Vechtomov, A. V Mikhalev, and V. V Sidorov, “Semirings of Continuous Functions,” J. Math. Sci., vol. 237, no. 2, pp. 191–244, 2019, doi: 10.1007/s10958-019-4150-8.

Y. N. Wu, X. Z. Zhao, and M. M. Ren, “On varieties of flat nil-semirings,” Semigr. Forum, vol. 106, no. 1, pp. 271–284, 2023, doi: 10.1007/s00233-023-10337-2.

L. A. Zadeh, “Fuzzy Sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, 1965, doi: https://doi.org/10.1016/S0019-9958(65)90241-X.

S. Bashir, R. Mazhar, H. Abbas, and M. Shabir, “Regular ternary semirings in terms of bipolar fuzzy ideals,” Comput. Appl. Math., vol. 39, no. 4, pp. 1–18, 2020, doi: 10.1007/s40314-020-01319-z.

S. K. Sardar, S. Goswami, and Y. B. Jun, “Role of Operator Semirings in Characterizing Γ - semirings in Terms of Fuzzy Subsets,” vol. 8658, 2019, doi: 10.1007/s12543-012-0115-z.

M. Akram and W. A. Dudek, “Intuitionistic fuzzy left k-ideals of semirings,” Soft Comput., vol. 12, no. 9, pp. 881–890, 2008, doi: 10.1007/s00500-007-0256-x.

C. B. Kim, “Isomorphism theorems and fuzzy k-ideals of k-semirings,” Fuzzy Sets Syst., vol. 112, no. 2, pp. 333–342, 2000, doi: 10.1016/S0165-0114(98)00018-9.

S. Ghosh, “Fuzzy k-ideals of semirings,” Fuzzy Sets Syst., vol. 95, no. 1, pp. 103–108, 1998, doi: https://doi.org/10.1016/S0165-0114(96)00306-5.

S. Abdurrahman, “Interior ideal fuzzy semiring,” Epsil. J. Mat. Murni Dan Terap., vol. 15, no. 2, pp. 116–123, 2021, doi: ttps://doi.org/10.20527/epsilon.v15i2.4894.

S. Abdurrahman, C. Hira, and A. Hanif Arif, “Anti subsemiring fuzzy,” Epsil. J. Mat. Murni Dan Terap., vol. 16, no. 1, pp. 83–92, 2022, doi: https://doi.org/10.20527/epsilon.v16i1.5443.

M. O. Massa’deh and A. Fellatah, “Some properties on intuitionistic Q-fuzzy k-ideals and k–Q-fuzzy ideals in Γ -semirings,” Afrika Mat., vol. 30, no. 7, pp. 1145–1152, 2019, doi: 10.1007/s13370-019-00709-9.

S. Abdurrahman, “Karakteristik subsemiring fuzzy,” J. Fourier, vol. 9, no. 1, pp. 19–23, 2020, doi: 10.14421/fourier.2020.91.19-23.

S. Abdurrahman, “Ideal Fuzzy Near-Ring,” J. Epsil., vol. 6, no. 2, pp. 13–19, 2012, [Online]. Available: http://ppjp.ulm.ac.id/index.php/epsilon/article/view/83/68.

J. Neggers, Y. B. A. E. Jun, and H. E. E. S. I. K. Kim, “On L-fuzzy ideals in semiring II,” Czechoslov. Math. J., vol. 49, no. 124, pp. 127–133, 1999.

M. Durcheva, Semirings as Building Blocks In Cryptography, 1st ed. Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK: Cambridge Scholars Publishing, 2020.

J. S. Golan, “Semirings,” in Semirings and Affine Equations over Them: Theory and Applications, Centre for Mathematics and Computer Science, Amsterdam, The Netherlands: Kluwer Academic Publishers, 2003, pp. 1–26.

J. N. Mordeson, “Zadeh’s influence on mathematics,” Sci. Iran., vol. 18, no. 3 D, pp. 596–601, 2011, doi: 10.1016/j.scient.2011.04.012.

J. Ahsan, J. N. Mordeson, and M. Shabir, “Fuzzy Ideals of Semirings,” in Fuzzy Semirings with Applications to Automata Theory, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 15–29.

S. Abdurrahman, “Homomorphisms and (λ, µ] – Fuzzy subgroup,” AIP Conf. Proc., vol. 2577, no. 1, p. 20001, Jul. 2022, doi: 10.1063/5.0096015.

S. Abdurrahman, “ω – fuzzy subsemiring.pdf,” J. Mat. Sains, dan Teknol., vol. 21, no. 1, pp. 1–10, 2020, doi: https://doi.org/10.33830/jmst.v21i1.673.2020.

S. Abdurrahman, “Interior subgrup ω-fuzzy,” Fibonacci J. Pendidik. Mat. dan Mat., vol. 6, no. 2, pp. 91–98, 2020, doi: https://doi.org/10.24853/fbc.6.2.91-98.

S. Abdurrahman, “Produk Kartesius dari Ideal Fuzzy Near-ring,” in Seminar Nasional Matematika dan Pendidikan Matematika UNY, 2015, pp. 479–482, [Online]. Available: http://eprints.unlam.ac.id/545/1/Produk Kartesius dari Ideal Fuzzy Near-ring_Prosiding SEMNAS UNY 14 Nov 2015.pdf.

S. Abdurrahman, “Produk Kartesius Konplemen Ideal Fuzzy,” in Seminar Nasional Pendidikan Matematika Unissula 2016, 2016, pp. 305–308, [Online]. Available: http://fkip.unissula.ac.id/download/prosiding_seminar_matematika_2016.pdf.

J. N. Mordeson, K. R. Bhutani, and A. Rosenfeld, “Fuzzy Subsets and Fuzzy Subgroups BT - Fuzzy Group Theory,” J. N. Mordeson, K. R. Bhutani, and A. Rosenfeld, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 1–39.

Published
2023-06-11
How to Cite
[1]
S. Abdurrahman, “CROSS PRODUCT OF IDEAL FUZZY SEMIRING”, BAREKENG: J. Math. & App., vol. 17, no. 2, pp. 1131-1138, Jun. 2023.