CLUSTER ANALYSIS FOR DISTRICT/CITY GROUPING BASED ON VARIABLES AFFECTING POVERTY IN ACEH PROVINCE USING AVERAGE LINKAGE METHOD

  • Mirda Olivia Mathematics Departments, Faculty of Engineering, Samudra University, Indonesia
  • Nurviana Nurviana Mathematics Departments, Faculty of Engineering, Samudra University, Indonesia
  • Fairus Fairus Mathematics Departments, Faculty of Engineering, Samudra University, Indonesia
Keywords: Aceh, Average Linkage, Cluster Analysis, Poverty

Abstract

Poverty is an inability of a person/household to meet basic needs in everyday life. Aceh is one of the provinces in Indonesia which is still faced with the problem of poverty. In March 2021 the poor population in Aceh numbered 834.24 thousand people and in September 2021 the poor population in Aceh increased by 16 thousand people, a total of 850.26 thousand people. Therefore the authors are interested in classifying and looking at the characteristics of 23 districts/cities in Aceh Province based on 5 variables that affect poverty. This study uses data from SUSENAS processed from BPS Kota Langsa in 2021. The variables used are households with the type of floor of a residential building made of soil/bamboo (X1), households with a floor area of ​​a residential building < 10 m2 per capita (X2), households with residential walls made of bamboo/rumbia/wood (X3), households with a source of drinking water from unprotected wells/springs/rivers/rainwater (X5), and households whose head of household did not attend school/didn't finish primary school/only primary school (X8). This study uses the average linkage method, namely the distance between two clusters is measured by the average distance between objects in each cluster. Of the 23 regencies/cities, 3 clusters were formed, namely cluster 1 with the lowest poverty rate consisting of 17 regencies/cities. Cluster 2 with the highest poverty rate consists of 2 districts/cities. Cluster 3 with a moderate poverty level consists of 4 districts/cities. The characteristics of the clusters that are formed are in clusters 1, 2 and 3 the dominant poverty level is influenced by the variable X3, which means that there are still many households that have houses with inadequate wall types. In clusters 1 and 3 the poverty rate is not dominantly influenced by variable X1, which means that many households have houses with proper floor types. In cluster 2 the poverty rate is not dominantly influenced by variable X5, which means that many households consume drinking water from cleaner and more protected sources.

Downloads

Download data is not yet available.

References

Y. Yacoub, “Pengaruh Tingkat Pengangguran terhadap Tingkat Kemiskinan Kabupaten / Kota di Provinsi Kalimantan Barat,” vol. 8, pp. 176–185, 2012.

BPS Provinsi Aceh, “Profil Kemiskinan di Provinsi Aceh September 2013,” no. 4, pp. 1–5, 2013.

D. V. Ferezagia, “Analisis Tingkat Kemiskinan di Indonesia,” J. Sos. Hum. Terap., vol. 1, no. 1, pp. 1–6, 2018.

M. Goreti, Y. Novia N, and S. Wahyuningsih, “Perbandingan Hasil Analisis Cluster dengan Menggunakan Metode Single Linkage dan Metode C-Means (Studi Kasus: Data Tingkat Kualitas Udara Ambien pada Perusahaan Perkebunan di Kabupaten Kutai Barat Tahun 2014),” J. EKSPONENSIAL, vol. 7, no. 1, pp. 9–16, 2016.

A. N. Fathia, R. Rahmawati, and Tarno, “Analisis Klaster Kecamatan Di Kabupaten Semarang Berdasarkan Potensi Desa Menggunakan Metode Ward Dan Single Linkage,” Gaussian, vol. 5, no. 4, pp. 801–810, 2016, [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/gaussian

D. U. Muis, “Perbandingan Analisis Cluster Hierarki Aglomeratif Dengan Menggunakan Metode Single Linkage, Complete Linkage dan Average Linkage (Studi Kasus : Indikator Kemiskinan Ditinjau dari Sektor Perumahan dan Lingkungan di Kabupaten Gunung Kidul Tahun 2015,” pp. 1–14, 2017.

Y. Masruroh, “Infrastruktur jalan terhadap Perekonomian Kota Malang,” J. Ekon. dan Bisnis, vol. 11, no. 9, pp. 112–130, 2019.

E. H. Jacobus, P. . Kindangen, and E. N. Walewangko, “Analisis Faktor-Faktor Yang Mempengaruhi Kemiskinan Rumah Tangga Di Sulawesi Utara,” J. Pembang. Ekon. Dan Keuang. Drh., vol. 19, no. 7, pp. 86–103, 2019, doi: 10.35794/jpekd.19900.19.7.2018.

E. Verdian, “Analisis Faktor yang Merupakan Intensi Perpindahan Merek Transportasi Online di Surabaya,” Agora, vol. 7, no. 1, pp. 1–8, 2019.

W. Alwi and M. Hasrul, “Analisis Klaster Untuk Pengelompokkan Kabupaten/Kota Di Provinsi Sulawesi Selatan Berdasarkan Indikator Kesejahteraan Rakyat,” J. MSA ( Mat. dan Stat. serta Apl. ), vol. 6, no. 1, p. 35, 2018, doi: 10.24252/msa.v6i1.4782.

Q. Nafisah and N. E. Chandra, “Analisis Cluster Average Linkage Berdasarkan Faktor-Faktor Kemiskinan di Provinsi Jawa Timur,” Zeta - Math J., vol. 3, no. 2, pp. 31–36, 2017, doi: 10.31102/zeta.2017.3.2.31-36.

S. Machfudhoh and N. Wahyuningsih, “Analisis Cluster Kabupaten / Kota Berdasarkan Pertumbuhan Ekonomi Jawa Timur,” Sains dan Seni Pomits, vol. 2, no. 1, pp. 1–8, 2013, [Online]. Available: http://digilib.its.ac.id/public/ITS-paper-37597-1210100028-paper.pdf

M. W. Talakua, Z. A. Leleury, and A. W. Talluta, “Analisis Cluster Dengan Menggunakan Metode Provinsi Maluku Berdasarkan Indikator Indeks Pembangunan Manusia Tahun 2014,” J. Ilmu Mat. dan Terap., vol. 11, no. 2, pp. 119–128, 2017.

C. Suhaeni, A. Kurnia, and R. Ristiyanti, “Perbandingan Hasil Pengelompokan menggunakan Analisis Cluster Berhirarki, K-Means Cluster, dan Cluster Ensemble (Studi Kasus Data Indikator Pelayanan Kesehatan Ibu Hamil),” J. Media Infotama, vol. 14, no. 1, 2018, doi: 10.37676/jmi.v14i1.469.

U. Putriana, Y. Setyawan, and Noeryanti, “Metode Cluster Analysis Untuk Pengelompokan Kabupaten/Kota Di Provinsi Jawa Tengah Berdasarkan Variabel Yang Mempengaruhi Kemiskinan Pada Tahun 2013,” J. Stat. Ind. dan Komputasi, vol. 1, no. 1, pp. 38–52, 2016.

C. E. Mongi, “Penggunaan Analisis Two Step Clustering untuk Data Campuran,” d’CARTESIAN, vol. 4, no. 1, p. 9, 2015, doi: 10.35799/dc.4.1.2015.7251.

Published
2023-12-18
How to Cite
[1]
M. Olivia, N. Nurviana, and F. Fairus, “CLUSTER ANALYSIS FOR DISTRICT/CITY GROUPING BASED ON VARIABLES AFFECTING POVERTY IN ACEH PROVINCE USING AVERAGE LINKAGE METHOD”, BAREKENG: J. Math. & App., vol. 17, no. 4, pp. 1865-1872, Dec. 2023.