MODELING CLUSTERWISE LINEAR REGRESSION ON POVERTY RATE IN INDONESIA

  • Eni Meylisah Statistics Study Program, Mathematic Departement, Faculty of Mathematics and Natural Science, Bengkulu University, Indonesia
  • Dyah Setyo Rini Statistics Study Program, Mathematic Departement, Faculty of Mathematics and Natural Science, Bengkulu University, Indonesia
  • Herlin Fransiska Statistics Study Program, Mathematic Departement, Faculty of Mathematics and Natural Science, Bengkulu University, Indonesia
  • Winalia Agwil Statistics Study Program, Mathematic Departement, Faculty of Mathematics and Natural Science, Bengkulu University, Indonesia
  • Bagus Sartono Statistics Study Program, Faculty of Mathematics and Natural Science, IPB University, Indonesia
Keywords: Poverty, Cluster, Linear Regression, Clusterwise Linear Regression (CLR)

Abstract

When a person's income is so low that it cannot cover even the most basic living expenses, they are said to be poor. Data on poverty levels and hypothesized causes are used in this study. If the data pattern forms clusters, one of the regression analyses that can be used is Clusterwise Linear Regression (CLR). Therefore, this study aimed to determine the poverty rate modeling in Indonesia with the CLR method. The results showed that the best model is with 3 clusters, that for cluster 1, the factors that significantly affect the percentage of poverty are the percentage of electricity users , the number of small and micro industries and the number of tourist villages n cluster 2, the amount of village tours . In cluster 3, the percentage of users of electricity and the percentage of villages that have mining and quarrying .

Downloads

Download data is not yet available.

References

M. J. Pandu, “Pemodelan Persentase Kemiskinan di Provinsi Nusa Tenggara Timur dengan Menggunakan Model Ekonometrika Spasial Data Panel Dinamis,” Thesis, Institut Teknologi Sepuluh Nopember, Surabaya, 2016.

P. S Gopal, M. A. Abdul Rahman, N. M. Malek, P. S. Jamir Singh, and L. Chee Hong, “Kemiskinan Adalah Satu Fenomena Multidimensi: Suatu Pemerhatian Awal,” Malaysian J. Social Sciences Humanities (MJSSH)., vol. 6, no. 1, pp. 40–51, 2021, doi: 10.47405/mjssh.v6i1.608.

E. H. Jacobus, P. Kindangen, and E. N. Walewangko, “Analisis Faktor-faktor yang Mempengaruhi Kemiskinan Rumah Tangga di Sulawesi Utara,” J. Pembangan Ekonomi dan Keuangan Daerah., vol. 19, no. 3, pp. 86–103, 2018.

M. Ramdani, “Determinan Kemiskinan di Indonesia Tahun 1982-2012,” Economics Development Analysis Journal., vol. 4, no. 1, pp. 58–64, 2015.

BPS, “Profil Kemiskinan di Indonesia September 2020,”. Jakarta: Badan Pusat Statistika, 2021.

A. Husniyah, N. A. Basyah, and A. Mustofa, “Dampak Usaha Mikro Kecil dan Menengah ( UMKM ) Terhadap Pengentasan Kemiskinan dan Pengangguran di Kota Sibolga,”Journal of Economica Didactica., vol. 2, no. 1, 2022.

I. N. Sudiarta and I. W. Suardana, “Dampak Pariwisata terhadap Kemiskinan di Kawasan Pariwisata di Bali,” J. Kajian Bali, vol. 6, no. 2, pp. 209–228, 2016.

N. Zuhdiyaty and D. Kaluge, “Analisis Faktor-Faktor yang Mempengaruhi Kemiskinan di Indonesia Selama Lima Tahun Terakhir (Studi Kasus Pada 33 Provinsi),” J. Ilmiah Bisnis dan Ekonomi Asia, vol. 11, no. 2, pp. 27–31, 2017.

Yaziz, D. Kusnandar, and S. W. Rizki, “Analisis Regresi Robust Estimasi-M dengan Menggunakan Pembobotan Bisquare dan Welsch dalam Mengatasi Data Outlier,” Buletin Ilmiah Mat, Stat, dan Terapannya (Bimaster), vol. 08, no. 4, pp. 799–804, 2019.

M. suharsono Putri, “Analisis regresi linear gerombol dengan algoritma pertukaran ( exchange algorithm ),” Thesis, Institut Pertanian Bogor, Bogor, 2015.

B. Ari and H. A. Guvenir, “Clustered linear regression,” Elsevier, vol. 15, no. 3, pp. 169–175, 2002, doi: 10.1016/S0950-7051(01)00154-X.

G. Qian and Y. Wu, “Estimation and Selection in Regression Clustering,” European Journal of Pure Applied Math., vol. 4, no. 4, pp. 455–466, 2011.

A. M. Bagirov, A. Mahmood, and A. Barton, “Prediction of monthly rainfall in victoria, Australia: Clusterwise linier regression approach,” Atmospheric Research., vol. 188, pp. 20–29, 2017, doi: 10.1016/j.atmosres.2017.01.003.

De Sarbo W.S., Oliver R.L., and Rangaswamy“A simulated Annealing Methodology for Clusterwise Linear Regression,” J. Psychometrika., vol. 54, no. 4, pp. 707–736, 1989.

De Sarbo W.S., and W. L. Cron, “A maximum likelihood methodology for clusterwise linear regression,” Journal of Classification., vol. 5, no. 2, pp. 249–282, 1988, doi: 10.1007/BF01897167.

K. M. Ramachandran and C. P. Tsokos, “Mathematical Statistics With Applications”, New York (US): Elsevier Academic Press, 2009.

K. T and G. Mclachlan, “The EM Algorithm,” ResearchGate, 2014.

T. A. Kusuma and Suparman, “Algoritma Expectation-Maximization ( EM ) Untuk Estimasi Distribusi Mixture,” J. Konvergensi, vol. 4, no. 2, pp. 65–83, 2014.

Y. D. Nugroho and I. Sandyawan, “Analisis Kasus Covid-19 Berbasis Google Trends di Indonesia pada Masa New Normal,” in Statistics in the New Normal : a Challenge of Big Data and Official Statistics, 2020, pp. 349–358.

T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning Data Mining, Inference, and Prediction” Springer. 2009.

M. M. Majore, D. T. Salaki, and J. D. Prang, “Penerapan Regresi Binomial Negatif dalam Mengatasi Overdispersi Regresi Poisson Pada Kasus Jumlah Kematian Ibu,” J. Mat. dan Apl., vol. 9, no. 2, pp. 133–139, 2020.

R. Ardinsyah, “Implementasi Algoritma EM pada Metode Kemungkinan Maksimum untuk Pemodelan Regresi Linear Gerombol,” Skripsi, Institut Pertanian Bogor, Bogor, 2014.

Published
2023-09-30
How to Cite
[1]
E. Meylisah, D. Rini, H. Fransiska, W. Agwil, and B. Sartono, “MODELING CLUSTERWISE LINEAR REGRESSION ON POVERTY RATE IN INDONESIA”, BAREKENG: J. Math. & App., vol. 17, no. 3, pp. 1653-1662, Sep. 2023.