A COMPARISON OF FUZZY TIME SERIES CHENG AND CHEN-HSU IN FORECASTING TOTAL AIRPLANE PASSENGERS OF SOEKARNO-HATTA AIRPORT
Abstract
In some cases, the demand for flights has increased or decreased unexpectedly. Based on this airport as a service provider balance the availability of the service and the needs in the field. To balance all the provided services, the airport needs to predict the total passenger that would visit the airport on consecutive days. Thus, a form of time-series forecast is used in this research. We applied fuzzy time series (FTS) to forecasting total airplane passengers, where there are several logics in FTS including FTS Cheng’s Logic and FTS Chen-Hsu’s Logic. To determine the accuracy of the forecast, use three criteria, namely Root Mean Squared Error (RMSE), Mean Absolute Deviation (MAD), and Mean Absolute Percentage Error (MAPE). In terms of modelling and forecasting data, FTS Chen-Hsu’s Logic is better than FTS Cheng’s Logic. This is shown in the value of three accuracy criteria of FTS Chen-Hsu’s Logic are smaller than FTS Cheng’s Logic. Conclusion, FTS Chen-Hsu method can be used as a forecasting model for the total passenger airplane in Soekarno-Hatta International Airport
Downloads
References
“Bepergian dengan Pesawat Disebut Paling Aman, Ini Datanya Halaman all - Kompas.com.” Accessed: Oct. 30, 2023. [Online]. Available: https://internasional.kompas.com/read/2019/03/11/20212381/bepergian-dengan-pesawat-disebut-paling-aman-ini-datanya?page=all
“Semester I 2022, Jumlah Penumpang di Bandara Soekarno - Hatta Melonjak jadi 18,15 Juta - Bisnis Tempo.co.” Accessed: Oct. 30, 2023. [Online]. Available: https://bisnis.tempo.co/read/1617866/semester-i-2022-jumlah-penumpang-di-bandara-soekarno-hatta-melonjak-jadi-1815-juta
C. D. I. Suryaningrum, N. Yudistira, and K. Rahman, “Perbandingan Metode Fuzzy Time Series Average-Based Interval dan Long Short-Term Memory untuk Peramalan Harga Komoditi Kopi Arabika Sumatera Utara,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, vol. 2548, p. 964X, 2022.
S. Rima. Amatullah, “Perbandingan Metode Dekomposisi dan Metode Fuzzy Time Series Untuk Peramalan Jumlah Penumpang Kereta Stasiun Bogor,” Feb. 2023.
E. Lesmana, N. Anggriani, Sukono, Fatimah, and A. T. Bon, “Comparison of double exponential smoothing holt and fuzzy time series methods in forecasting stock prices (case study: PT bank central Asia Tbk),” in Proceedings of the International Conference on Industrial Engineering and Operations Management, 2019.
Q. Song and B. S. Chissom, “Forecasting enrollments with fuzzy time series—Part I,” Fuzzy Sets Syst, vol. 54, no. 1, pp. 1–9, 1993.
N. Ritha, T. Matulatan, and R. Hidayat, “Penerapan Fuzzy Time Series Stevenson Porter pada Peramalan Pergerakan Nilai Forex,” Seminar Nasional Inovasi Teknologi, no. Query date: 2022-10-05 09:20:54, 2020.
A. Hayatunnufus, I. Purnamasari, and S. Prangga, “Peramalan Menggunakan Fuzzy Time Series Berbasis Algoritma Novel,” STATISTIKA Journal of Theoretical Statistics and Its Applications, vol. 21, no. 2, 2022, doi: 10.29313/statistika.v21i2.336.
I. Manfaati Nur, A. Pietoyo, E. Asmaul Basir, M. Semarang, P. Kelautan dan Perikanan Pangandaran, and B. Perikanan Budidaya Laut Ambon, “Implementasi Metode Fuzzy Time Series Singh Pada Peramalan Banggai Cardinalfish di Balai Perikanan Budidaya Laut Ambon,” Prosiding Seminar Nasional Venue Artikulasi-Riset, Inovasi, Resonansi-Teori, dan Aplikasi Statistika (VARIANSI), vol. 2, no. 1, pp. 138–148, Mar. 2021, Accessed: Oct. 30, 2023. [Online]. Available: https://ojs.unm.ac.id/variansistatistika/article/view/19492
C.-H. Cheng, T.-L. Chen, H. J. Teoh, and C.-H. Chiang, “Fuzzy time-series based on adaptive expectation model for TAIEX forecasting,” Expert Syst Appl, vol. 34, no. 2, pp. 1126–1132, 2008.
S.-M. Chen and C.-C. Hsu, “A new method to forecast enrollments using fuzzy time series,” International Journal of Applied Science and Engineering, vol. 2, no. 3, pp. 234–244, 2004.
T. Tursina, R. Septiriana, and I. Varian, “Prediksi Indeks Harga Konsumen Menggunakan Metode Fuzzy Time Series Cheng,” Jurnal Locus Penelitian dan Pengabdian, vol. 2, no. 1, pp. 51–59, 2023.
M. Y. Fathoni, “Implementasi Metode Fuzzy Time Series Cheng untuk prediksi Kosentrasi Gas NO2 Di Udara,” Jurnal Sistem Informasi Bisnis, vol. 07, pp. 17–23, 2017.
S. Inayati, Y. Yuliana, and A. Hanafiah, “Prediksi Jumlah Peserta BPJS Penerima Bantuan Iuran (PBI) APBN Menggunakan Metode Fuzzy Time Series Cheng,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 2, pp. 373–384, 2021.
S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst, vol. 81, no. 3, pp. 311–319, 1996.
D. Yustitia, “Perbandingan Metode Fuzzy Time Series Chen dan Fuzzy Time Series Cheng Pada Permintaan Pupuk Pertanian Urea di Kabupaten Blora,” Repasitori Universitas Muhammadiyah Semarang, 2019.
Arnita, N. Afnisah, and F. Marpaung, “A Comparison of the Fuzzy Time Series Methods of Chen, Cheng and Markov Chain in Predicting Rainfall in Medan,” in Journal of Physics: Conference Series, 2020. doi: 10.1088/1742-6596/1462/1/012044.
G. Change et al., “Perbandingan Metode Fuzzy Chen, Fuzzy Cheng dan Fuzzy Markov Chain Pada Peramalan Harga Pasar Bahan Pokok di Kabupaten Lamongan,” Paper Knowledge . Toward a Media History of Documents, vol. 3, no. 2, 2021.
A. Alfajriani, M. Wati, and N. Puspitasari, “Penerapan Metode Fuzzy Time Series Chen dan Hsu dalam Memprediksi Kunjungan Wisatawan di Museum Mulawarman,” Jurnal Rekayasa Teknologi Informasi (JURTI), vol. 4, no. 2, pp. 144–153, 2020.
R. Rahmawati, M. R. R. Putra, and F. Muttakin, “Prediksi Jumlah Pengunjung Perpustakaan Daerah Kabupaten Batang dengan Menggunakan Metode Fuzzy Time Series Chen-Hsu,” Journal of Mathematics UNP, vol. 8, no. 1, pp. 110–119, 2023.
Zaenurrohman, S. Hariyanto, and T. Udjiani, “Fuzzy time series Markov Chain and Fuzzy time series Chen & Hsu for forecasting,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-6596/1943/1/012128.
K. Huarng, “Effective lengths of intervals to improve forecasting in fuzzy time series,” Fuzzy Sets Syst, vol. 123, no. 3, pp. 387–394, 2001.
E. D. Wuryanto and N. V. I. Puspita, “Model Average-Based Fuzzy Time Series untuk Prediksi Perkembangan Kasus Terkonfirmasi Positif COVID-19,” Jurnal Informatika Upgris, vol. 7, no. 2, 2021.
S. Solikhin and U. Yudatama, “Fuzzy Time Series dan Algoritme Average Based Length untuk Prediksi Pekerja Migran Indonesia,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 4, pp. 369–376, 2019.
A. A. Pramesti, W. Sulandari, S. Subanti, and Y. Yudhanto, “Forecasting the Composite Stock Price Index Using Fuzzy Time Series Type 2: Peramalan Indeks Harga Saham Gabungan dengan menggunakan Metode Fuzzy Time Series Tipe 2,” RADIANT: Journal of Applied, Social, and Education Studies, vol. 4, no. 2, pp. 118–133, 2023.
“Badan Pusat Statistik.” Accessed: Oct. 30, 2023. [Online]. Available: https://www.bps.go.id/indicator/17/66/1/jumlah-penumpang-pesawat-di-bandara-utama.html
F. Susilo, Himpunan dan logika kabur serta aplikasinya. 2006.
D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to time series analysis and forecasting. John Wiley & Sons, 2015.
Copyright (c) 2024 Latifah Zahra, Maiyastri Maiyastri, Izzati Rahmi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.