EDGE IRREGULAR REFLEXIVE LABELING ON ALTERNATE TRIANGULAR SNAKE AND DOUBLE ALTERNATE QUADRILATERAL SNAKE

  • Lutfiah Alifia Zalzabila Department of Mathematics, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Indonesia
  • Diari Indriati Department of Mathematics, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Indonesia
  • Titin Sri Martini Department of Mathematics, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Indonesia
Keywords: Reflexive Edge Strength, Alternate Triangular Snake, Double Alternate Quadrilateral Snake

Abstract

Let G in this paper be a connected and simple graph with set V(G) which is called a vertex and E(G) which is called an edge. The edge irregular reflexive k-labeling f on G consist of integers {1,2,3,...,k_e} as edge labels and even integers {0,2,4,...,2k_v} as the label of vertices, k=max{k_e,2k_v}, all edge weights are different. The weight of an edge xy in G represented by wt(xy) is defined as wt(xy)= f (x)+ f (xy)+ f (y). The smallest k of graph G has an edge irregular reflexive k-labeling is called the reflexive edge strength, symbolized by res (G). In article, we discuss about edge irregular reflexive k-labeling of alternate triangular snake A(T_n ) and the double alternate quadrilateral snake DA(Q_n ). In this paper, the res of alternate triangular snake A(T_n ) , n≥3 has been obtained. That is ⌈(2n-1)/3⌉ for n even,2n-1≢2,3 (mod 6),⌈(2n-1)/3⌉+1 for n even,2n-1=2,3 (mod 6),⌈(2n-2)/3⌉ for n odd,2n-2≢2,3 (mod 6), and ⌈(2n-2)/3⌉+1 for n odd,2n-2=2,3 (mod 6). Then, the reflexive edge strength of double alternate quadrilateral snake DA (Q_n) ⌈ (4n-1 )/3⌉for n even, 4n - 1 ≠2,3 (mod 6), ⌈ (4n-1 )/3⌉+1 for n even, 4n - 1 = 2,3 (mod 6), ⌈ (4n-4)/3⌉ for n odd, 4n - 4 ≠2,3 (mod 6), and ⌈ (4n-4 )/3⌉+1 for n odd, 4n - 4 = 2,3 (mod 6).

Downloads

Download data is not yet available.

References

A. M. Marr and W. D. Wallis, Magic Graphs. in SpringerLink : Bücher. Springer New York, 2012. [Online]. Available: https://books.google.co.id/books?id=6fzHPEkpMpYC

J. A. Gallian, “A Dynamic Survey of Graph Labeling,” Electron. J. Comb., Edition 25, no. DS6, pp. 1-356, 2022.

M. Bača, S. Jendrol’, M. Miller, and J. Ryan, “On irregular total labellings,” Discrete Math., vol. 307, no. 11–12, pp. 1378–1388, 2007, doi: 10.1016/j.disc.2005.11.075.

M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, and D. Tanna, “On edge irregular reflexive labellings for the generalized friendship graphs,” Mathematics, vol. 5, no. 4, pp. 1–11, 2017, doi: 10.3390/math5040067.

M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, and D. Tanna, “Note on edge irregular reflexive labelings of graphs,” AKCE Int. J. Graphs Comb., vol. 16, no. 2, pp. 145–157, 2019, doi: 10.1016/j.akcej.2018.01.013.

D. Tanna, J. Ryan, and A. Semaničová-Feňovčíková, “Edge irregular reflexive labeling of prisms and wheels,” Australas. J. Comb., vol. 69, no. 3, pp. 394–401, 2017.

I. Hesti Agustin, I. Utoyo, Daflk, and M. D. Venkatachalam, “Edge irregular reflexive labeling of some tree graphs,” J. Phys. Conf. Ser., vol. 1543, no. 1, 2020, doi: 10.1088/1742-6596/1543/1/012008.

J. L. G. Guirao, S. Ahmad, M. K. Siddiqui, and M. Ibrahim, “Edge irregular reflexive labeling for disjoint union of Generalized petersen graph,” Mathematics, vol. 6, no. 12, pp. 1–10, 2018, doi: 10.3390/math6120304.

X. Zhang, M. Ibrahim, S. A. ul H. Bokhary, and M. K. Siddiqui, “Edge irregular reflexive labeling for the disjoint union of gear graphs and prism graphs,” Mathematics, vol. 6, no. 9, pp. 1–10, 2018, doi: 10.3390/MATH6090142.

D. Indriati, Widodo, and I. Rosyida, “Edge Irregular Reflexive Labeling on Corona of Path and Other Graphs,” J. Phys. Conf. Ser., vol. 1489, no. 1, 2020, doi: 10.1088/1742-6596/1489/1/012004.

M. Ibrahim, M. J. A. Khan, and M. K. Siddiqui, “Edge irregular reflexive labeling for corona product of graphs,” Ars Comb., vol. 152, no. 3, pp. 263–282, 2020.

I. Setiawan and D. Indriati, “Edge irregular reflexive labeling on sun graph and corona of cycle and null graph with two vertices,” Indones. J. Comb., vol. 5, no. 1, p. 35, Jun. 2021, doi: 10.19184/ijc.2021.5.1.5.

J. A. Novelia and D. Indriati, “Edge irregular reflexive labeling on banana tree graphs B 2, nand B 3, n,” AIP Conf. Proc., vol. 2326, no. February, 2021, doi: 10.1063/5.0039316.

N. I. S. Budi, D. Indriati, and B. Winarno, “Edge irregular reflexive labeling on tadpole graphs T m,1and T m,2,” AIP Conf. Proc., vol. 2326, no. February, 2021, doi: 10.1063/5.0039337.

R. Ponraj and S. S. Narayanan, “Difference Cordiality of Some Snake Graphs,” J. Appl. Math. informatics, vol. 32, no. 3_4, pp. 377–387, 2014, doi: 10.14317/jami.2014.377.

Published
2023-12-18
How to Cite
[1]
L. Zalzabila, D. Indriati, and T. Martini, “EDGE IRREGULAR REFLEXIVE LABELING ON ALTERNATE TRIANGULAR SNAKE AND DOUBLE ALTERNATE QUADRILATERAL SNAKE”, BAREKENG: J. Math. & App., vol. 17, no. 4, pp. 1941-1948, Dec. 2023.