LOGISTIC REGRESSION MODELING OF REDUCTANT HERBICIDE IN PAGARALAM COFFEE FARMING

  • Irmeilyana Irmeilyana Department of Mathematics, Faculty of Mathematics and Natural Science, University of Sriwijaya, Indonesia https://orcid.org/0000-0002-2970-3338
  • Ngudiantoro Ngudiantoro Department of Mathematics, Faculty of Mathematics and Natural Science, University of Sriwijaya, Indonesia
  • Sri Indra Maiyanti Department of Mathematics, Faculty of Mathematics and Natural Science, University of Sriwijaya, Indonesia
  • Siddiq Makhalli Department of Mathematics, Faculty of Mathematics and Natural Science, University of Sriwijaya, Indonesia
Keywords: Logistic Regression Model, Net Income, Pagaralam Coffee, Probability, Reductant Herbicides

Abstract

The presence of weeds can affect the productivity of coffee plants. The use of herbicides that are not wise in controlling weeds can have a negative impact on the quality of coffee production and land. This study aims to obtain a binary logistic regression model of the use of reductant herbicides by coffee farmers in Pagaralam South Sumatera. This research involved 165 coffee farmers, consisting of 81 farmers who used reductants and 85 farmers who did not use reductants. In the results of bivariate analysis, variables that have a significant effect on the status of using reductant herbicides, do not necessarily have a significant effect on the logistic regression model. Overall prediction accuracy of the model results of the enter method and backward method are respectively 78.2% and 76.4%. The two best models obtained show that farmer age, number of trees, number of family workers, and land productivity can reduce the probability value of farmers using reductant herbicide. On the other hand, variables that can increase the opportunity value of using reductants, starting with the greatest effect, are net income, length of harvest, frequency of herbicide use, frequency of use of organic fertilizers, and age of trees. Based on the factors that affect the use of reductants, coffee farmers should set aside costs for land maintenance, including costs for environmentally friendly weed control, so that they can support the coffee plants to continue producing optimally.

Downloads

Download data is not yet available.

Author Biographies

Ngudiantoro Ngudiantoro, Department of Mathematics, Faculty of Mathematics and Natural Science, University of Sriwijaya, Indonesia

Department of Mathematics

Sri Indra Maiyanti, Department of Mathematics, Faculty of Mathematics and Natural Science, University of Sriwijaya, Indonesia

Department of Mathematics

References

BPS Statistik Indonesia 2022. Jakarta: Badan Pusat Statistik, 2022.

R. Rukmana, Untung Selangit dari Agribisnis Kopi. Yogyakarta: Lily Publisher Ltd., 2014.

Pustadin, Outlook Kopi Komoditas Pertanian Sub-Sektor Perkebunan. Jakarta: Kementerian Pertanian Indonesia, 2016.

D. J. P. Ditjenbun, Statistik Perkebunan Unggulan Nasional 2019-2021. Direktorat Jenderal Perkebunan Kementerian Pertanian, 2020.

S. O. Binuomote, A. F. Lukman, O. Olumide, and A. Adeleke, “Modelling Annual Yield of Coffee in Nigeria Using ARIMA Time Series Model (2018 – 2050),” Int. J. Econ. Bus. Manag., vol. 6, no. 7, pp. 43–56, 2018.

Z. Fatma, “Analisis fungsi produksi dan efisiensi usahatani kopi rakyat di Aceh Tengah,” 2011.

B. Ginting, H. L. Nainggolan, and G. B. Siahaan, “Analisis faktor-faktor yang mempengaruhi sentra produksi komoditi kopi di Kabupaten Humbang Hasundutan,” Agrisep, 2018.

S. A. Sembiring, J. Hutauruk, P. Nababan, S. Ginting, and D. C. Barus, “The measurement of cash flow on arabica coffee farmers,” in IOP Conf. Series: Earth and Environmental Science, 2018, p. 205.

I. Irmeilyana, I. Amalia, S. I. Maiyanti, and N. Ngudiantoro, “Model Regresi Data Panel pada Faktor-faktor yang Menentukan Produksi Kopi di Provinsi Sumatera Selatan Tahun 2015-2021,” J. Sains Terap., vol. 8, no. 1, pp. 45–56, 2022, doi: 10.32487.

BPS, Statistik Kopi Indonesia 2020. Jakarta: Badan Pusat Statistik, 2020.

Irmeilyana, Ngudiantoro, A. Desiani, and D. Rodiah, “Deskripsi hubungan luas areal dan produksi perkebunan kopi di Indonesia menggunakan analisis bivariat dan analisis klaster,” Infomedia, vol. 4, no. 1, pp. 21–27, 2019, doi: http://dx.doi.org/10.30811/jim.v4i2.1534.

T. T. Margono, E. Lizarmi, and H. Kurniawan, “Sistem Budidaya Kopi Organik Solusi Untuk Bebas Glifosat,” Ditjenbun, 2021. https://ditjenbun.pertanian.go.id/sistem-budidaya-kopi-organik-solusi-untuk-bebas-glifosat/ (accessed Jan. 16, 2022).

F. Diyasti, Y. Maryani, and E. Lizarmi, “Hati-hati Penggunaan Herbisida Justru Dapat Melemahkan Tanaman Utama,” Ditjenbun, 2021. https://ditjenbun.pertanian.go.id/hati-hati-penggunaan-herbisida-justru-dapat-melemahkan-tanaman-utama/ (accessed May 17, 2023).

T. Surya, “Penurunan dosis penggunaan herbisida bisa hingga 50%,” AGRINA-ONLINE.COM, 2021. http://www.agrina-online.com/detail-berita/2021/02/18/56/7314/biaya-perkebunan-hemat-hingga-40-dengan-reduktan-herbisida (accessed May 17, 2023).

E. Mustari, “Perbedaan…….. membuka peluang untuk pengembangan kopi lebih bermanfaat,” Bandung, 2021.

Irmeilyana, Ngudiantoro, A. Desiani, and D. Rodiah, “Deskripsi hubungan luas areal dan produksi perkebunan kopi di provinsi sumatra selatan,” in Proseding SEMIRATA BKS PTN Indonesia Barat, 2019, pp. 74–86.

Irmeilyana, Ngudiantoro, and D. Rodiah, “Deskripsi Profil dan Karakter Usaha Tani Kopi Pagar Alam Berdasarkan Descriptive Statistics dan Korelasi,” Infomedia, vol. 4, no. 2, pp. 60–68, 2019, doi: http://dx.doi.org/10.30811/jim.v4i2.1534.

Irmeilyana, Ngudiantoro, and D. Rodiah, “Application of Simple Correspondence Analysis to Analyze Factors that Influence Land Productivity of Pagar Alam Coffee Farming,” In International Conference on Mathematics, Statistics, and Their Applications (ICMSA), 2019.

Irmeilyana, Ngudiantoro, M. N. Samsuri, and B. Suprihatin, “Logistic regression model on land productivity of Pagar Alam coffee farming,” in J. Phys.: Conf. Ser. 1943, 2021, pp. 1–12, doi: doi:10.1088/1742-6596/1943/1/012135.

Ngudiantoro, Irmeilyana, and M. N. Samsuri, “Binary Logistic Regression Modeling on Net Income of Pagar Alam Coffee Farmers,” Int. J. Appl. Sci. Smart Technol., vol. 2, no. 2, pp. 47–66, 2020.

Irmeilyana, Ngudiantoro, and D. Rodiah, “Correspondence analysis pada hubungan faktor-faktor yang mempengaruhi pendapatan petani kopi Pagaralam,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 1, pp. 179–192, 2021, doi: https://doi.org/10.30598/barekengvol15iss1year2021.

Irmeilyana, Ngudiantoro, and S. I. Maiyanti, “Socialization of sustainable Pagar Alam Coffee Farming using herbicide reductors,” Abdimas, vol. 7, no. 2, pp. 309–318, 2022.

Irmeilyana, Ngudiantoro, and S. I. Maiyanti, “Hypothesis testing in the study of the characteristics of Pagaralam coffee farmers as herbicide reductant users,” in Sriwijaya International Conference in Basic and Applied Sciences (SICBAS 2021), 2021.

Irmeilyana, N. Ngudiantoro, and S. I. Maiyanti, “Regression Model on Pagaralam Coffee Farmers’ Income with the Influence of The Use of Herbicide Reductant Variable,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 2, pp. 409–420, 2022, doi: https://doi.org/10.30598/barekengvol16iss2pp409-420.

Irmeilyana, Ngudiantoro, and S. I. Maiyanti, “Application of Two Groups Analysis and Cluster Analysis on comparison of Characteristics of Pagaralam Coffee Farmers Categories,” Barekeng, vol. 17, no. 1, pp. 101–112, 2023, doi: https://doi.org/10.30598/barekengvol17iss1year2023.

Irmeilyana, Ngudiantoro, S. I. Maiyanti, and I. Febrianti, “Correspondence Analysis to Know Factors Related to the Use of Reducant Herbicide on Pagaralam Coffee Farmers,” Pattimura Int. J. Math., vol. 1, no. 2, pp. 69–80, 2022, doi: DOI https://doi.org/10.30598/pijmathvol1iss2pp69-80.

A. Agresti, Categorial Data Analysis. New York: Jhon Wiley & Sons Inc., 2009.

A. Widarjono, Analisis Multivariat Terapan, Kedua. Yogyakarta: UPP STIM YKPN, 2015.

A. Rawat, “Binary Logistic Regression An overview and implementation in R,” Towards Data Science, 2017. https://towardsdatascience.com/implementing-binary-logistic-regression-in-r-7d802a9d98fe (accessed May 17, 2023).

D. N. Gujarati and D. C. Porter, Dasar-Dasar Ekonometrika (Jilid 1 dan Jilid 2 Terjemahan), 5th ed. Jakarta: Salemba Barat, 2010.

D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, 2nd ed. New York: Jhon Wiley & Sons Inc., 2000.

P. Ranganathan, C. S. Pramesh, and R. Aggarwal, “Common pitfalls in statistical analysis: Measures of agreement,” Perspect. Clin. Res., vol. 8, no. 4, pp. 187–191, 2017, doi: 10.4103/picr.PICR_123_17.

R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 6th ed. New Jersey: Prentice-Hall, Inc., 2007.

V. Kanade, “What Is Logistic Regression? Equation, Assumptions, Types, and Best Practices,” Spiceworks Inc., 2022. https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-logistic-regression/ (accessed May 17, 2023).

V.-N. Hoang and J. Watson, “Teaching binary logistic regression modeling in an introductory business analytics course,” Decis. Sci. J. Innov. Educ., pp. 171–245, 2022, doi: https://doi.org/10.1111/dsji.12274.

M. N. Samsuri, Ngudiantoro, and Irmeilyana, “Pemodelan Regresi Logistik Produktivitas Pengrajin Songket di Kabupaten Ogan Ilir,” in Proceeding The 5th Annual Reasearch Seminar 2019, 2020, pp. 66–71.

C. Lawson and D. C. Montgomery, “A logistic regression modelling approach to business opportunity assessment,” Int. J. Six Sigma Compet. Advant., vol. 3, no. 2, pp. 120–136, 2007, doi: https://www.inderscienceonline.com/doi/abs/10.1504/IJSSCA.2007.015012.

J. Jajang, N. Nurhayati, and S. Mufida, “ORDINAL LOGISTIC REGRESSION MODEL AND CLASSIFICATION TREE ON ORDINAL RESPONSE DATA”, BAREKENG: J. Math. & App., vol. 16, no. 1, pp. 075-082, Mar. 2022.

T. Dewi and R. Kusumawati, “AN ORDINAL LOGISTIC REGRESSION MODEL FOR ANALYZING RISK ZONE STATUS OF COVID-19 SPREAD”, BAREKENG: J. Math. & App., vol. 16, no. 3, pp. 853-860, Sep. 2022.

Y. Hikmah, “LOGISTIC MODELING TO PREDICT THE INTEREST OF THE INDONESIAN PEOPLE FOR BUYING FLOOD IMPACTED INSURANCE PRODUCTS”, BAREKENG: J. Math. & App., vol. 17, no. 1, pp. 0323-0330, Apr. 2023.

Y. Sari, M. Noya Van Delsen, and Y. Lesnussa, “BINARY LOGISTICS REGRESSION MODEL TO IDENTIFY FACTORS ASSOCIATED WITH LOW BIRTH WEIGHT (LBW) (CASE STUDY: BABY DATA AT DR. M. HAULUSSY HOSPITAL AMBON)”, BAREKENG: J. Math. & App., vol. 16, no. 3, pp. 985-994, Sep. 2022.

S. Siegel, Statistik Nonparametrik untuk Ilmu-Ilmu Sosial. Jakarta: Gramedia, 2011.

A. Kalra, “The odds ratio: Principles and applications,” J. Pract. Cardiovasc. Sci., vol. 2, no. 1, pp. 49–51, 2016, doi: https://doi.org/10.4103/2395-5414.182992.

S. C. Wohon, D. Hatidja, and N. Nainggolan, “Penentuan Model Regresi Terbaik dengan Menggunakan Metode Stepwise (Studi Kasus: Impor Beras di Sulawesi di Sulawesi Utara),” J. Ilm. Sains, vol. 17, no. 2, pp. 80–88, 2017.

A. J. Scott, “Biometrics,” JSTOR, vol. 47, no. 4, pp. 1632–33, 1991, doi: https://doi.org/10.2307/2532419.

Published
2023-12-18
How to Cite
[1]
I. Irmeilyana, N. Ngudiantoro, S. Maiyanti, and S. Makhalli, “LOGISTIC REGRESSION MODELING OF REDUCTANT HERBICIDE IN PAGARALAM COFFEE FARMING”, BAREKENG: J. Math. & App., vol. 17, no. 4, pp. 1957-1968, Dec. 2023.