APPLICATION OF NONPARAMETRIC GEOGRAPHICALLY WEIGHTED REGRESSION METHOD ON OPEN UNEMPLOYMENT RATE DATA IN INDONESIA

  • Marisa Nanda Saputri Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Mulawarman, Indonesia
  • Sifriyani Sifriyani Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Mulawarman, Indonesia
  • Wasono Wasono Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Mulawarman, Indonesia
Keywords: Nonparametric, Regression, Spline, Spatial Data, Unemployment

Abstract

Nonparametric Geographically Weighted Regression (NGWR) model is a development of nonparametric regression with geographic weights for spatial data where parameter estimators are local to each observation location. NGWR is used to obtain the best model for the Open Unemployment Rate (OUR) data in Indonesia. Unemployment is still a significant social and economic problem in Indonesia. This study aims to obtain the NGWR model on the OUR data in Indonesia and to determine the factors that significantly affect OUR. The method used is the NGWR model with bisquare kernel function weighting and gaussian kernel function. The best model is obtained by NGWR with bisquare kernel function weighting at order 1 and knot point 1, with R2 is 83.45 percent which explains that the predictor variables affect the OUR by that number. The factors that have a significant effect on OUR are the percentage of population density, minimum wage, average years of schooling, GRDP, and the percentage of poor people.

Downloads

Download data is not yet available.

References

N. G. Mankiw, Principles of Economics. Australia: South Western Cengage Learning, 2014.

D. N. Gujarati, Basic Econometrics, 4th ed. New York: McGraw-Hill Education, 2003.

‪I N. Budiantara, pline dalam Regresi Nonparametrik: Sebuah Pemodelan Statistika Masa Kini dan Masa Mendatang. Surabaya: ITS Press, 2009.‬‬‬‬

Ruppert, David, M. . Wand, and R. . Carroll, Semiparametric regression. Cambridge: Cambridge University Press, 2003.

Sifriyani, A. R. M. Sari, A. T. R. Dani, and S. Jalaluddin, “Bi-Response Truncated Spline Nonparametric Regression With Optimal Knot Point Selection Using Generalized Cross-Validation in Diabetes Mellitus Patient’S Blood Sugar Levels,” Commun. Math. Biol. Neurosci., vol. 2023, pp. 1–18, 2023, doi: 10.28919/cmbn/7903.

R. L. Eubank, Nonparametric Regression and Spline Smoothing. New York: Marcel Dekker, 1999.

Sifriyani, A. T. R. Dani, M. Fauziyah, M. N. Hayati, S. Wahyuningsih, and S. Prangga, “Spline and kernel mixed estimators in multivariable nonparametric regression for dengue hemorrhagic fever model,” vol. 11, pp. 1–15, 2023.

R. E. Caraka and H. Yasin, Geographically Weighted Regression (GWR) : Sebuah Pendekatan Regresi Geografis. Yogyakarta: Mobius, 2017.

Sifriyani, S. . Kartiko, I. N. Budiantara, and Gunardi, “Development of nonparametric geographically weighted regression using truncated spline approach,” Songklanakarin J. Sci. Technol., vol. 40, pp. 909–920, 2018, doi: 10.14456/sjst-psu.2018.98.

Sifriyani and Ruslan, “Analysis of the causes of flooding in Samarinda City using spatial statistics: Geographically weighted regression,” AIP Conf. Proc., vol. 2554, no. 1, p. 030002, 2023, doi: 10.1063/5.0104009.

Sifriyani and R. Hidayat, “Application of nonparametric truncated spline regression on infant mortality rate in Kalimantan,” AIP Conf. Proc., vol. 2480, no. 1, p. 030004, 2023, doi: 10.1063/5.0104011.

Sifriyani, M. Y. Diu, Z. Mar’ah, D. Anggraini, and S. Jalaluddin, “Modeling of Dengue Hemorrhagic Fever Cases in Aws Hospital Samarinda Using Bi-Responses Nonparametric Regression With Estimator Spline Truncated,” Commun. Math. Biol. Neurosci., vol. 2023, pp. 1–12, 2023, doi: 10.28919/cmbn/7888.

Sifriyani, H. Ilmi, and Z. Mar’Ah, “Application of Nonparametric Geographically Weighted Spline Regression Model for Spatial Mapping of Open Unemployment Rate in Kalimantan,” J. Phys. Conf. Ser., vol. 2123, no. 1, 2021, doi: 10.1088/1742-6596/2123/1/012038.

B. Indonesia, Statistik Indonesia Tahun 2021. Jakarta: Badan Pusat Statistik, 2021.

Suharno, Hukum Ketenagakerjaan Indonesia: Pasca UU No. 13 Tahun 2013. Jakarta: Raja Grafindo Persada, 2013.

M. Kremer, “The O-Ring Theory of Economic Development,” Q. J. Econ., vol. 108, no. 3, pp. 551–575, 1993, doi: 10.2307/2118400.

H. Sasana, “Pengaruh Pendapatan Asli Daerah, Dana Alokasi Umum, dan Dana Alokasi Khusus Terhadap Pertumbuhan Ekonomi dan PDRB di Kabupaten/Kota Provinsi Jawa Tengah,” Eko-Regional, vol. 5, no. 2, pp. 12–29, 2019.

B. Indonesia, Perhitungan dan Analisis Kemiskinan Makro Indonesia. Jakarta: Badan Pusat Statistik, 2017.

L. Anselin, Spatial econometrics: Methods and models. Netherland: Kluwer Academic Publishers, 1988.

Sifriyani, I. N. Budiantara, and Gunardi, “Geographically weighted regression with spline approach,” Far East J. Math. Sci., vol. 101, pp. 1183–1196, 2017, doi: 10.17654/MS101061183.

Sifriyani, I. N. Budiantara, S. H. Kartiko, and Gunardi, “A new method of hypothesis test for truncated spline nonparametric regression influenced by spatial heterogeneity and application,” Abstr. Appl. Anal., vol. 2018, 2018, doi: 10.1155/2018/9769150.

Published
2023-12-19
How to Cite
[1]
M. Saputri, S. Sifriyani, and W. Wasono, “APPLICATION OF NONPARAMETRIC GEOGRAPHICALLY WEIGHTED REGRESSION METHOD ON OPEN UNEMPLOYMENT RATE DATA IN INDONESIA”, BAREKENG: J. Math. & App., vol. 17, no. 4, pp. 2071-2080, Dec. 2023.