COMPARING GAUSSIAN KERNEL AND QUADRATIC SPLINE OF NONPARAMETRIC REGRESSION IN MODELING INFECTIOUS DISEASES

  • Amanda Adityaningrum Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gorontalo State University, Indonesia https://orcid.org/0000-0002-9874-7641
  • Sri Indriani Ladjali Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gorontalo State University, Indonesia
  • Ismail Djakaria Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gorontalo State University, Indonesia
  • Lailany Yahya Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gorontalo State University, Indonesia
  • Muhammad Rezky Friesta Payu Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gorontalo State University, Indonesia
  • La Ode Nashar Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gorontalo State University, Indonesia
  • Herlina Jusuf Department of Public Health, Faculty of Sports and Health, Gorontalo State University, Indonesia
Keywords: Gaussian Kernel, Quadratic Spline, Tuberculosis, Diarrhoeal, Pneumonia, COVID-19

Abstract

The regression curve for nonparametric regression is assumed to belong to some infinite-dimensional collection of functions, which allows great flexibility in the form of the curve. This research intends to compare the Gaussian Kernel and Quadratic Spline regressions in four infectious diseases in Indonesia by 2021. The data used is secondary data from the Central Bureau of Statistics and the Ministry of Health, Indonesia, and the sample consists of four infectious diseases in Indonesia by 2021 (Tuberculosis, Diarrhoeal, Pneumonia, and COVID-19). Considering the correlation value, it was found that the independent and dependent variables of the four infectious diseases are all highly correlated (r values are more than 0.7). Furthermore, the scatter plots for four infectious diseases do not follow a particular pattern; due to this, parametric regression cannot be used to analyze the data. Therefore, nonparametric regression was applied in this research . According to the analysis, the Gaussian Kernel is the best regression technique for modeling four infectious diseases in Indonesia by 2021, which its R2 values are 99.85% (Tuberculosis), 100% (Diarrhoeal), 99.91% (Pneumonia), and 99.99% (COVID-19).

Downloads

Download data is not yet available.

References

UN, “SDG Progress Report 2023,” 2023. [Online]. Available: https://sdgs.un.org/documents/sdg-progress-report-2023-advance-unedited-version-52208

WHO, “SDG Target 3.3 Communicable diseases,” THE GLOBAL HEALTH OBSERVATORY. https://www.who.int/data/gho/data/themes/topics/sdg-target-3_3-communicable-diseases (accessed Jul. 02, 2023).

World Bank, “Indonesia,” The World Bank Data, 2023. https://data.worldbank.org/country/ID (accessed Jul. 02, 2023).

W. H. O. WHO, “Global health estimates: Leading causes of death,” 2023. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed May 10, 2023).

R. Kemenkes, “Profil Kesehatan Indonesia 2021,” Indonesia, 2022. [Online]. Available: https://www.kemkes.go.id/downloads/resources/download/pusdatin/profil-kesehatan-indonesia/Profil-Kesehatan-2021.pdf

D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, 5th ed. United Kingdom: Wiley, 2012.

A. Schneider, G. Hommel, and M. Blettner, “Linear Regression Analysis,” Dtsch. Arztebl. Int., Nov. 2010, doi: 10.3238/arztebl.2010.0776.

R. L. Eubank, Nonparametric regression and spline smoothing, 2nd ed. New York: Marcel Dekker, Inc, 1999.

W. Härdle, Applied Nonparametric Regression. Berlin: Cambridge University Press, 1990. doi: 10.1017/CCOL0521382483.

P. P. Gabrela, J. D. T. Purnomo, and I. N. Budiantara, “Mixed spline truncated, kernel, and Fourier series estimator in biresponse nonparametric regression,” 2023, p. 080015. doi: 10.1063/5.0105823.

M. H. Pratama, Sifriyani, and D. A. Nohe, “Regresi Nonparametrik Multivariabel dengan Pendekatan Spline Truncated pada Kasus Tuberculosis,” STATISTIKA, vol. 22, no. 1, pp. 87–93, 2022, [Online]. Available: https://journals.unisba.ac.id/index.php/statistika/article/view/506

R. Asriyanti, I. Yahya, B. Abapihi, G. N. A. Wibawa, and L. Laome, “Penerapan Regresi Nonparametrik Spline dalam Memodelkan Faktor-Faktor yang Mempengaruhi Jumlah Kasus Tuberkulosis di Sulawesi Tenggara,” Semin. Nas. Sains dan Terap. VI, vol. 6, no. April, pp. 100–109, 2022, [Online]. Available: https://ejournal.unsrat.ac.id/v3/index.php/sinta6/article/view/41875

N. Evitasari, S. S. Handajani, and H. Pratiwi, “Pemodelan faktor-faktor yang memengaruhi angka kesembuhan tuberkulosis di Jawa Barat menggunakan regresi spline truncated,” Maj. Ilm. Mat. dan Stat., vol. 22, no. 2, p. 118, Sep. 2022, doi: 10.19184/mims.v22i2.30356.

I. G. P. S. Darma, M. Ratna, and I. N. Budiantara, “Pemodelan Faktor yang Memengaruhi Angka Kasus Tuberculosis di Kota Surabaya Menggunakan Regresi Nonparametrik Spline Truncated,” J. Sains dan Seni ITS, vol. 8, no. 2, Feb. 2020, doi: 10.12962/j23373520.v8i2.45404.

D. F. W. Hapsari and L. Khikmah, “Modeling of Tuberculosis Case in Central Java 2018 with Three Knot Point,” J. Intell. Comput. Heal. Informatics, vol. 1, no. 2, p. 53, Sep. 2020, doi: 10.26714/jichi.v1i2.6348.

N. P. R. Anggreni, N. L. P. Suciptawati, and I. G. A. M. Srinadi, “Model Regresi Nonparametrik Spline Truncated pada Jumlah Kasus Tuberkulosis di Provinsi Bali Tahun 2016,” E-Jurnal Mat., vol. 7, no. 3, p. 211, Sep. 2018, doi: 10.24843/MTK.2018.v07.i03.p205.

E. Andrianto, “Pendugaan Regresi Nonparametrik Dengan Fungsi Kernel Gaussian,” Universitas Brawijaya, Malang, 2014. [Online]. Available: http://repository.ub.ac.id/id/eprint/154034/

M. A. D. Octavanny, I. N. Budiantara, H. Kuswanto, and D. P. Rahmawati, “Nonparametric Regression Model for Longitudinal Data with Mixed Truncated Spline and Fourier Series,” Abstr. Appl. Anal., vol. 2020, pp. 1–11, Dec. 2020, doi: 10.1155/2020/4710745.

M. S. Khudzaifi, “Pemodelan Kasus Penyakit Diare pada Balita di Kota Surabaya Menggunakan Regresi Nonparametrik Spline Truncated,” Institut Teknologi Sepuluh Nopember, Surabaya, 2017. [Online]. Available: https://repository.its.ac.id/47753/

S. A. Richard et al., “Diarrhea in Early Childhood: Short-term Association with Weight and Long-term Association with Length,” Am. J. Epidemiol., vol. 178, no. 7, pp. 1129–1138, Oct. 2013, doi: 10.1093/aje/kwt094.

C. N. Afisah, “Faktor-faktor yang Mempengaruhi Pneumonia pada Balita di Jawa Barat Menggunakan Regresi Nonparametrik Spline Truncated,” Institut Teknologi Sepuluh Nopember, Surabaya, 2020. [Online]. Available: https://repository.its.ac.id/73622/

I. G. A. M. V. Dewi, I. G. A. M. Srinadi, and M. Susilawati, “Pemodelan Kasus Pneumonia pada Balita di Provinsi Bali Menggunakan Metode Regresi Nonparametrik B-Spline,” E-Jurnal Mat., vol. 9, no. 3, p. 197, Sep. 2020, doi: 10.24843/MTK.2020.v09.i03.p299.

M. A. D. Octavanny, I. N. Budiantara, H. Kuswanto, and D. P. Rahmawati, “Pneumonia cases modeling in Java Island using two estimators of nonparametric regression for longitudinal data,” 2021, p. 060029. doi: 10.1063/5.0042763.

C. Imama et al., “Mask Compliance Modeling Related COVID-19 in Indonesia Using Spline Nonparametric Regression,” J. Varian, vol. 5, no. 2, pp. 179–190, May 2022, doi: 10.30812/varian.v5i2.1895.

K. Demertzis, D. Tsiotas, and L. Magafas, “Modeling and Forecasting the COVID-19 Temporal Spread in Greece: An Exploratory Approach Based on Complex Network Defined Splines,” Int. J. Environ. Res. Public Health, vol. 17, no. 13, p. 4693, Jun. 2020, doi: 10.3390/ijerph17134693.

R. Yamamoto et al., “Threshold of increase in oxygen demand to predict mechanical ventilation use in novel coronavirus disease 2019: A retrospective cohort study incorporating restricted cubic spline regression,” PLoS One, vol. 17, no. 7, p. e0269876, Jul. 2022, doi: 10.1371/journal.pone.0269876.

O. Polsen and P. Kamoljitprapa, “Cubic B-spline and Generalised Linear Models for COVID-19 Patients in Thailand,” J. Appl. Sci., vol. 20, no. 2, pp. 23–33, Sep. 2021, doi: 10.14416/j.appsci.2021.02.003.

N. Chamidah, M. Rifada, and D. Amelia, “A theoretical discussion on modeling the number of COVID-19 death cases using penalized spline negative binomial regression approach,” Commun. Math. Biol. Neurosci., vol. 2022, 2022, doi: 10.28919/cmbn/7518.

R. Diana and R. Rory, “PEMODELAN KASUS COVID-19 MENGGUNAKAN MODEL REGRESI NONPARAMETRIK,” Semin. Nas. Off. Stat., vol. 2020, no. 1, pp. 108–115, Jan. 2021, doi: 10.34123/semnasoffstat.v2020i1.588.

C. Liang and L. Shen, “An analysis of coronavirus disease 2019 with spline regression at province level during first-level response to major public health emergency out of Hubei, China,” Epidemiol. Infect., vol. 149, p. e10, Jan. 2021, doi: 10.1017/S095026882000312X.

T. W. Utami and A. Lahdji, “MODELING OF LOCAL POLYNOMIAL KERNEL NONPARAMETRIC REGRESSION FOR COVID DAILY CASES IN SEMARANG CITY, INDONESIA,” MEDIA Stat., vol. 14, no. 2, pp. 206–215, Jan. 2022, doi: 10.14710/medstat.14.2.206-215.

W. Chao, L. Bo, L. Huan, and P. Pai, “Consistence Condition of Kernel Selection in Regular Linear Kernel Regression and Its Application in COVID-19 High-risk Areas Exploration,” Res. Sq., pp. 0–20, 2022, doi: https://doi.org/10.21203/rs.3.rs-1430675/v1.

R. Rory and R. Diana, “Pemodelan Data COVID-19 Menggunakan Regresi Polinomial Lokal,” Semin. Nas. Off. Stat., vol. 2020, no. 1, pp. 91–98, Jan. 2021, doi: 10.34123/semnasoffstat.v2020i1.554.

S. Saidi, N. Herawati, K. Nisa, and E. Setiawan, “Nonparametric Modeling Using Kernel Method for the Estimation of the Covid-19 Data in Indonesia During 2020,” Int. J. Math. Trends Technol., vol. 67, no. 6, pp. 136–144, Jun. 2021, doi: 10.14445/22315373/IJMTT-V67I6P516.

M. D. Pasarella, S. Sifriyani, and F. D. T. Amijaya, “NONPARAMETRIK REGRESSION MODEL ESTIMATION WITH THE FOURIER SERIES THE FOURIER SERIES APPROACH AND ITS APPLICATION TO THE ACCUMULATIVE COVID-19 DATA IN INDONESIA,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 4, pp. 1167–1174, Dec. 2022, doi: 10.30598/barekengvol16iss4pp1167-1174.

L. R. Cheuruiyot, G. O. Orwa, and O. R. Otieno, “Kernel Function and Nonparametric Regression Estimation: Which Function is Appropriate?,” African J. Math. Stat. Stud., vol. 3, no. 3, pp. 51–59, 2020, [Online]. Available: https://www.researchgate.net/publication/342832915_KERNEL_FUNCTION_AND_NONPARAMETRIC_REGRESSION_ESTIMATION_WHICH_FUNCTION_IS_APPROPRIATE

A. Tripena, “Analisis Regresi Spline Kuadratik,” Semin. Nas. Mat. dan Pendidik. Mat., 2011, [Online]. Available: https://eprints.uny.ac.id/7288/

D. Yosefanny, H. Yozza, and I. Rahmi HG, “Model Spline Kuadratik Untuk Merancang Kurva Pertumbuhan Balita Di Kota Padang,” J. Mat. UNAND, vol. 7, no. 1, pp. 33–42, 2018, doi: 10.25077/jmu.7.1.52-58.2018.

S. S. Rajak, S. Ismail, and R. Resmawan, “Metode Conditional Autoregressive dalam Analisis Penyebaran Kasus Penyakit Tuberculosis,” Jambura J. Probab. Stat., vol. 2, no. 1, pp. 28–34, Apr. 2021, doi: 10.34312/jjps.v2i1.9771.

H. Jusuf, M. Sakti, I. Husein, M. Elveny, R. Syah, and S. Tuba, “Modelling optimally to the treatment of TB patients for increase medical knowledge,” Syst. Rev. Pharm., vol. 11, no. 4, pp. 742–748, 2020.

K. Kristy, J. Jajang, and N. Nurhayati, “Analisis Regresi Count Data untuk Pemodelan Jumlah Kasus Penyakit Tuberkulosis di Kabupaten Banyumas,” J. Ilm. Mat. dan Pendidik. Mat., vol. 13, no. 2, p. 57, Dec. 2021, doi: 10.20884/1.jmp.2021.13.2.4919.

T. D. Hartanto, L. D. Saraswati, M. S. Adi, and A. Udiyono, “Analisis Spasial Persebaran Kasus Tuberkulosis Paru di Kota Semarang Tahun 2018,” J. Kesehat. Masy., vol. 7, no. 4, pp. 2356–3346, 2019, [Online]. Available: http://ejournal3.undip.ac.id/index.php/jkm

W. H. O. WHO, “Diarrhoeal disease,” 2017. https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease (accessed May 10, 2023).

V. Mogharab and S. Rajput, “Factors associated with diarrhea in children under 12 years of age referred to Ostad Motahari hospital of Jahrom in 2020,” J. Fam. Med. Prim. Care, vol. 11, no. 10, p. 6170, 2022, doi: 10.4103/jfmpc.jfmpc_342_22.

A. Sokic-Milutinovic, A. Pavlovic-Markovic, R. S. Tomasevic, and S. Lukic, “Diarrhea as a Clinical Challenge: General Practitioner Approach,” Dig. Dis., vol. 40, no. 3, pp. 282–289, 2022, doi: 10.1159/000517111.

T. Mulatu, N. B. Yimer, B. Alemnew, M. Linger, and M. L. Liben, “Exclusive breastfeeding lowers the odds of childhood diarrhea and other medical conditions: evidence from the 2016 Ethiopian demographic and health survey,” Ital. J. Pediatr., vol. 47, no. 1, p. 166, Dec. 2021, doi: 10.1186/s13052-021-01115-3.

D. Haile and S. Biadgilign, “Higher breastfeeding performance index is associated with lower risk of illness in infants under six months in Ethiopia,” Int. Breastfeed. J., vol. 10, no. 1, p. 32, Dec. 2015, doi: 10.1186/s13006-015-0057-2.

R. S. Imran, R. Resmawan, N. Achmad, and A. R. Nuha, “SEIPR-Mathematical Model of the Pneumonia Spreading in Toddlers with Immunization and Treatment Effects,” J. Mat. Stat. dan Komputasi, vol. 17, no. 2, pp. 202–218, Dec. 2020, doi: 10.20956/jmsk.v17i2.11166.

N. Achmad, M. R. F. Payu, and Y. Rahim, “Pemodelan Pneumonia Berat Menggunakan Regresi Zero Inflated Negative Binomial di Gorontalo,” Euler J. Ilm. Mat. Sains dan Teknol., vol. 10, no. 1, pp. 45–53, May 2022, doi: 10.34312/euler.v10i1.13990.

A. L. O. Martins, D. da S. F. Nascimento, I. J. C. Schneider, and F. Schuelter-Trevisol, “Incidence of community-acquired infections of lower airways among infants,” Rev. Paul. Pediatr. (English Ed., vol. 34, no. 2, pp. 204–209, Jun. 2016, doi: 10.1016/j.rppede.2015.10.005.

P. A. W. Karmany, S. S. Rahardjo, and B. Murti, “Effect of Low Birth Weight on the Risk of Pneumonia in Children Under Five: Meta-Analysis,” 2020. doi: 10.26911/the7thicph.01.61.

V. N. Sutriana, M. N. Sitaresmi, and A. Wahab, “Risk factors for childhood pneumonia: a case-control study in a high prevalence area in Indonesia,” Clin. Exp. Pediatr., vol. 64, no. 11, pp. 588–595, Nov. 2021, doi: 10.3345/cep.2020.00339.

A. Adityaningrum and H. Jusuf, “Forecasting Simulation of Indonesia COVID-19 Confirmed Cases,” J. Heal. Sci. Gorontalo J. Heal. Sci. Community, vol. 5, no. 3, pp. 10–16, Mar. 2022, doi: 10.35971/gojhes.v5i3.13029.

I. Djakaria and S. E. Saleh, “Covid-19 forecast using Holt-Winters exponential smoothing,” J. Phys. Conf. Ser., vol. 1882, no. 1, p. 012033, May 2021, doi: 10.1088/1742-6596/1882/1/012033.

V. Galasso, V. Pons, P. Profeta, M. Becher, S. Brouard, and M. Foucault, “Gender differences in COVID-19 attitudes and behavior: Panel evidence from eight countries,” Proc. Natl. Acad. Sci., vol. 117, no. 44, pp. 27285–27291, Nov. 2020, doi: 10.1073/pnas.2012520117.

Y. Aleksanyan and J. P. Weinman, “Women, men and COVID-19,” Soc. Sci. Med., vol. 294, p. 114698, Feb. 2022, doi: 10.1016/j.socscimed.2022.114698.

N. Dehingia and A. Raj, “Sex differences in COVID-19 case fatality: do we know enough?,” Lancet Glob. Heal., vol. 9, no. 1, pp. e14–e15, Jan. 2021, doi: 10.1016/S2214-109X(20)30464-2.

A. Doerre and G. Doblhammer, “The influence of gender on COVID-19 infections and mortality in Germany: Insights from age- and gender-specific modeling of contact rates, infections, and deaths in the early phase of the pandemic,” PLoS One, vol. 17, no. 5, p. e0268119, May 2022, doi: 10.1371/journal.pone.0268119.

M. M. Robertson et al., “The Epidemiology of Long Coronavirus Disease in US Adults,” Clin. Infect. Dis., vol. 76, no. 9, pp. 1636–1645, May 2023, doi: 10.1093/cid/ciac961.

A. Subramanian et al., “Symptoms and risk factors for long COVID in non-hospitalized adults,” Nat. Med., vol. 28, no. 8, pp. 1706–1714, Aug. 2022, doi: 10.1038/s41591-022-01909-w.

S. le Cessie, R. H. H. Groenwold, and O. M. Dekkers, “Correlation or regression, that’s the question,” Eur. J. Endocrinol., vol. 184, no. 6, pp. E15–E18, Jun. 2021, doi: 10.1530/EJE-21-0251.

P. Schober, C. Boer, and L. A. Schwarte, “Correlation Coefficients: Appropriate Use and Interpretation,” Anesth Analg, vol. 126, no. 5, pp. 1763–1768, May 2018, doi: 10.1213/ANE.0000000000002864.

S. E. Tanni, C. M. Patino, and J. C. Ferreira, “Correlation vs. regression in association studies,” J. Bras. Pneumol., vol. 46, no. 1, 2020, doi: 10.1590/1806-3713/e20200030.

F. Z. Okwonu, B. L. Asaju, and F. I. Arunaye, “Breakdown Analysis of Pearson Correlation Coefficient and Robust Correlation Methods,” IOP Conf. Ser. Mater. Sci. Eng., vol. 917, no. 1, p. 012065, Sep. 2020, doi: 10.1088/1757-899X/917/1/012065.

A. T. R. Dani, N. Y. Adrianingsih, and A. Ainurrochmah, “Pengujian Hipotesis Simultan Model Regresi Nonparametrik Spline Truncated dalam Pemodelan Kasus Ekonomi,” Jambura J. Probab. Stat., vol. 1, no. 2, pp. 98–106, Nov. 2020, doi: 10.34312/jjps.v1i2.7755.

N. Y. Adrianingsih, I. N. Budiantara, and J. D. T. Purnomo, “Mixture Model Nonparametric Regression and Its Application,” J. Phys. Conf. Ser., vol. 1842, no. 1, p. 012044, Mar. 2021, doi: 10.1088/1742-6596/1842/1/012044.

S. Suparti, R. Santoso, A. Prahutama, and A. R. Devi, Regresi Nonparametrik : Buku ajar, 1st ed. Ponorogo: WADE Group, 2018. [Online]. Available: https://opac.perpusnas.go.id/DetailOpac.aspx?id=1262978#

S. C. Junianingsih and Y. Karyana, “Regresi Nonparametrik Kernel dalam Pemodelan Jumlah Kelahiran Bayi di Jawa Barat Tahun 2017,” Bandung Conf. Ser. Stat., vol. 1, no. 1, pp. 30–37, Dec. 2021, doi: 10.29313/bcss.v1i1.39.

H. I. Zebua, “Pemodelan Kemiskinan di Sumatera Utara Menggunakan Regresi Nonparametrik Kernel dan Splines,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 899–907, Nov. 2021, doi: 10.34123/semnasoffstat.v2021i1.1087.

I. N. Budiantara, “Penelitian Bidang Regresi Spline Menuju Terwujudnya Penelitian Statistika Yang Mandiri Dan Berkarakter,” Pros. Semin. Nas. FMIPA Undiksha, pp. 9–28, 2011, [Online]. Available: https://ejournal.undiksha.ac.id/index.php/semnasmipa/article/view/2736

B. Suwasono, S. Widjaja, A. Zubaydi, Z. Yuliadi, and I. N. Budiantara, “Development of Technology Parameter Towards Shipbuilding Productivity Predictor Using Cubic Spline Approach,” Makara J. Technol., vol. 14, no. 2, May 2010, doi: 10.7454/mst.v14i2.704.

I. A. S. Intansari and I. N. Budiantara, “Inferensi Statistik untuk Kurva Regresi Nonparametrik Spline Kuadratik dan Aplikasinya pada Data ASFR (Age Spesific Fertility Rate) di Bali,” Institut Teknologi Sepuluh Nopember, 2016. [Online]. Available: https://repository.its.ac.id/51371/

I. Sriliana, I. N. Budiantara, and V. Ratnasari, “A Truncated Spline and Local Linear Mixed Estimator in Nonparametric Regression for Longitudinal Data and Its Application,” Symmetry (Basel)., vol. 14, no. 12, p. 2687, Dec. 2022, doi: 10.3390/sym14122687.

I. F. Yuliati and P. R. Sihombing, “Pemodelan Fertilitas Di Indonesia Tahun 2017 Menggunakan Pendekatan Regresi Nonparametrik Kernel dan Spline,” J. Stat. dan Apl., vol. 4, no. 1, pp. 48–60, Jun. 2020, doi: 10.21009/JSA.04105.

S. M. T. Marina and I. N. Budiantara, “Pemodelan Faktor-Faktor yang Mempengaruhi Persentase Kriminalitas di Jawa Timur dengan Pendekatan Regresi Semiparametrik Spline,” J. Sains dan Seni ITS, vol. 2, no. 2, pp. 147–152, 2013, [Online]. Available: https://ejurnal.its.ac.id/index.php/sains_seni/article/view/4512

S. Wulandary and D. I. Purnama, “Perbandingan Regresi Nonparametrik Kernel dan B-Splines pada Pemodelan Rata-Rata Lama Sekolah dan Pengeluaran Perkapita di Indonesia,” Jambura J. Probab. Stat., vol. 1, no. 2, pp. 89–97, Nov. 2020, doi: 10.34312/jjps.v1i2.7501.

A. T. R. Dani, F. B. Putra, M. A. Zen, V. Ratnasari, and Q. Q. A’yun, “Fourier Series Application for Modeling ‘Chocolate’ Keyword Search Trends in Google Trends Data,” J. Stat. Univ. Muhammadiyah Semarang, vol. 11, no. 2, pp. 1–9, 2023, [Online]. Available: https://jurnal.unimus.ac.id/index.php/statistik/article/view/11895

Kuzairi, Miswanto, and I. N. Budiantara, “Three form fourier series estimator semiparametric regression for longitudinal data,” J. Phys. Conf. Ser., vol. 1538, no. 1, May 2020, doi: 10.1088/1742-6596/1538/1/012058.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, no. e623, Jul. 2021, doi: 10.7717/peerj-cs.623.

Published
2023-12-19
How to Cite
[1]
A. Adityaningrum, “COMPARING GAUSSIAN KERNEL AND QUADRATIC SPLINE OF NONPARAMETRIC REGRESSION IN MODELING INFECTIOUS DISEASES”, BAREKENG: J. Math. & App., vol. 17, no. 4, pp. 2135-2146, Dec. 2023.