COMPARISON OF APARCH-TYPE MODELS: DOES THE CONTINUOUS AND JUMP COMPONENTS OF REALIZED VOLATILITY IMPROVE THE FITTING?

  • Didit B. Nugroho Master’s Program in Data Science, Satya Wacana Christian University, Indonesia
  • Nur I. M. Urosidin Study Program of Mathematics, Satya Wacana Christian University, Indonesia
  • Hanna A. Parhusip Master’s Program in Data Science, Satya Wacana Christian University, Indonesia
Keywords: APARCH model, ARWM method, Continuous and Jump, Realized Volatility

Abstract

This study aims to extend an APARCH-X(1,1) model to the APARCH-CJ(1,1) by separating the exogenous variable X into two components: continuous and discontinuous (jump). The study was based on the application of models to 1-min intraday high-frequency data from the Tokyo Stock Price Index from 2004 to 2011, where its dependent variable is daily return and its exogenous variability is Realized Volatility. As a basic framework, the return errors follow a Normal distribution. An Adaptive Random Walk Metropolis (ARWM) method was constructed in the Markov Chain Monte Carlo algorithm to estimate model parameters so that the model fits the observed return time series. By visual inspection, the parameter trace plots showed good convergence of the Markov chains, indicating that the ARWM method is efficient in estimating the studied models. Based on the results of the Akaike Information Criterion for model fitting to data, this study found that APARCH-CJ(1,1) is inferior to APARCH(1,1).

Downloads

Download data is not yet available.

References

G. P. M. Virgilio, “A theory of very short-time price change: security price drivers in times of high-frequency trading,” Financ. Innov., vol. 8, no. 66, 2022, doi: 10.1186/s40854-022-00371-4.

M. Andersson, L. Hermans, and T. Kostka, “Higher future financial market volatility: Potential triggers and amplifiers,” Financ. Stab. Rev., vol. 2, 2017.

T. Bollerslev, “Generalized autoregressive conditional heteroskedasticity,” J. Econom., vol. 31, no. 3, pp. 307–327, Apr. 1986, doi: 10.1016/0304-4076(86)90063-1.

R. Engle, “New Frontiers for ARCH Models,” J. Appl. Econom., vol. 17, no. 5, pp. 425–446, 2002, doi: 10.1002/jae.683.

Z. Ding, C. Granger, and R. Engle, “A long memory property of stock market returns and a new model,” J. Empir. Financ., vol. 1, no. 1, pp. 83–106, 1993, doi: 10.1016/0927-5398(93)90006-D.

M. Dzielinski, “Asymmetric attention and volatility asymmetry,” J. Empir. Financ., vol. 45, pp. 59–67, 2018, doi: 10.1016/j.jempfin.2017.09.010.

S. Stavroyiannis, “Value-at-Risk and backtesting with the APARCH model and the standardized Pearson type IV distribution,” Risk Manag. Anal. Financ. Institutions eJournal, 2016, doi: 10.2139/ssrn.2734058.

C. Francq and L. Q. Thieu, “QML inference for volatility models with covariates,” Econom. Theory, vol. 35, no. 1, pp. 1–36, 2019, doi: 10.1017/S0266466617000512.

H. Zhang and Q. Lan, “GARCH-type model with continuous and jump variation for stock volatility and its empirical study in China,” Math. Probl. Eng., vol. 2014, 2014, doi: 10.1155/2014/386721.

T. Shiohama, M. Hallin, D. Veredas, and M. Taniguchi, “Dynamic portfolio optimization using generalized dynamic conditional heteroskedastic factor models,” J. Japan Stat. Soc., vol. 40, no. 1, pp. 145–166, 2010, doi: 10.14490/jjss.40.145.

Y. F. Atchade and J. S. Rosenthal, “On adaptive Markov chain Monte Carlo algorithms,” Bernoulli, vol. 11, no. 5, pp. 815–828, 2005, doi: 10.3150/bj/1130077595.

J. C. Smolovic, M. Lipovina-Bozovic, and S. Vujosevic, “GARCH models in value at risk estimation: Empirical evidence from the Montenegrin stock exchange,” Econ. Res. Istraz., vol. 30, no. 1, pp. 477–498, 2017, doi: 10.1080/1331677X.2017.1305773.

A. Charles and O. Darné, “The Accuracy of Asymmetric GARCH Model Estimation,” Int. Econ., vol. 157, pp. 179–202, May 2019, doi: 10.1016/j.inteco.2018.11.001.

S.-S. Jin, H. Ju, and H.-J. Jung, “Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: recent advances and comparative study,” Struct. Infrastruct. Eng., vol. 15, no. 11, pp. 1548–1565, 2019, doi: 10.1080/15732479.2019.1628077.

D. van Ravenzwaaij, P. Cassey, and S. D. Brown, “A Simple Introduction to Markov Chain Monte-Carlo Sampling,” Psychon. Bull. Rev., vol. 25, no. 1, pp. 143–154, 2018, doi: 10.3758/s13423-016-1015-8.

D. B. Nugroho, “Comparative analysis of three MCMC methods for estimating GARCH models,” in IOP Conference Series: Materials Science and Engineering, 2018, vol. 403, no. 1, p. 012061, doi: 10.1088/1757-899X/403/1/012061.

D. B. Nugroho, B. A. A. Wicaksono, and L. Larwuy, “GARCH-X(1,1) model allowing a non-linear function of the variance to follow an AR(1) process,” Commun. Stat. Appl. Methods, vol. 30, no. 2, pp. 163–178, 2023, doi: 10.29220/CSAM.2023.30.2.163.

D. B. Nugroho, O. C. Dimitrio, and F. Tita, “The GARCH-X(1,1) model with exponentially transformed exogenous variables,” J. Sains dan Teknol., vol. 12, no. 1, pp. 65–72, 2023, doi: 10.23887/jstundiksha.v12i1.50714.

D. B. Nugroho and T. Morimoto, “Realized non-linear stochastic volatility models with asymmetric effects and generalized student’s t-distribution,” J. Japan Stat. Soc., vol. 44, no. 1, pp. 83–118, 2014, doi: 10.14490/jjss.44.83.

M. Sultonov, “External shocks and volatility overflow among the exchange rate of the Yen, Nikkei, TOPIX and sectoral stock indices,” J. Risk Financ. Manag., vol. 14, no. 11, p. 560, 2021, doi: 10.3390/jrfm14110560.

S. P. Brooks, “Markov chain Monte Carlo method and its application,” Stat., vol. 47, no. 1, pp. 69–100, 1998, doi: 10.1111/1467-9884.00117.

V. Roy, “Convergence diagnostics for Markov chain Monte Carlo,” Annu. Rev. Stat. Its Appl., vol. 7, pp. 387–412, 2020.

D. B. Nugroho, T. Mahatma, and Y. Pratomo, “GARCH models under power transformed returns: Empirical evidence from international stock indices,” Austrian J. Stat., vol. 50, no. 4, pp. 1–18, 2021, doi: 10.17713/ajs.v50i4.1075.

D. B. Nugroho, T. Mahatma, and Y. Pratomo, “Applying the non-linear transformation families to the lagged-variance of EGARCH and GJR models,” IAENG Int. J. Appl. Math., vol. 51, no. 4, pp. 908–919, 2021.

H. Le, U. Pham, P. Nguyen, and T. B. Pham, “Improvement on Monte Carlo Estimation of HPD Intervals,” Commun. Stat. - Simul. Comput., vol. 49, no. 9, pp. 2164–2180, 2020, doi: 10.1080/03610918.2018.1513141.

S. Chen, W. Zhang, X. Feng, and X. Xiong, “Asymmetry of retail investors’ attention and asymmetric volatility: Evidence from China,” Financ. Res. Lett., vol. 36, p. 101334, 2020, doi: 10.1016/j.frl.2019.101334.

D. B. Nugroho, B. Susanto, and S. R. Pratama, “Estimation of exchange rate volatility using APARCH-type models: A case study of Indonesia (2010–2015),” J. Ekon. dan Stud. Pembang., vol. 9, no. 1, pp. 65–75, Mar. 2017, doi: 10.17977/um002v9i12017p065.

V. Naimy, O. Haddad, G. Fernandez-Aviles, and R. E. Khoury, “The predictive capacity of GARCH-type models in measuring the volatility of crypto and world currencies,” PLoS One, vol. 16, no. 1, p. e0245904, 2021, doi: 10.1371/journal.pone.0245904.

Published
2024-03-01
How to Cite
[1]
D. Nugroho, N. Urosidin, and H. Parhusip, “COMPARISON OF APARCH-TYPE MODELS: DOES THE CONTINUOUS AND JUMP COMPONENTS OF REALIZED VOLATILITY IMPROVE THE FITTING?”, BAREKENG: J. Math. & App., vol. 18, no. 1, pp. 0085-0094, Mar. 2024.