SMALL AREA ESTIMATION WITH HIERARCHICAL BAYES FOR CROSS-SECTIONAL AND TIME SERIES SKEWED DATA
Abstract
Small Area Estimation (SAE) is a method based on modeling for estimating small area parameters, that applies Linear Mixed Model (LMM) as its basic. It is conventionally solved with Empirical Best Linear Unbiased Prediction (EBLUP). The main requirement for LMM to produce high precision estimates is normally distributed. The observation unit is food crop farmer households from Sulawesi Tenggara Province to estimate food and non-food per capita expenditure at the district/city level using SAE that has been positively skewed. Applying EBLUP for positively skewed data will result less accurate estimates. Meanwhile, transformation will be potentially result biased estimates. Therefore, the problem of skewed data and small area level in this research was completed by Hierarchical Bayes (HB) on combination cross-sectional and time series under skew-normal distribution assumption. The results obtained were skew-normal SAE HB model was significantly reducing Relative Root Mean Squared Error (RRMSE) than the direct estimation. It indicates that SAE modeling is able to provide a shrinkage effect on the direct estimation results. But, there is slightly different interpretating between direct estimation and skew-normal SAE HB. It is possible because the modeling used assumption that the autocorrelation coefficient is equal to 1 or known as the random walk effect. However, in reality, Susenas is not a panel data, so unit of observation for each time period may be different. Therefore, further research should be compared it with the skew-normal or another skewed distribution that assumes the autocorrelation coefficient is unknown and should be estimated in the model.
Downloads
References
N. Tzavidis, L. Zhang, and A. Luna, “From start to finish : a framework for the production of small area official statistics,” J.R.Statististical Soc., vol. 4, no. 181, pp. 927–979, 2018.
[ADB] Asian Development Bank, Introduction to Small Area Estimation Techniques: A Practical Guide for National Statistics Offices, no. May. Manila: Asian Development Bank, 2020.
E. Fabrizi, M. R. Ferrante, and C. Trivisano, “Bayesian small area estimation for skewed business survey variables,” J. R. Stat. Soc. Ser. C Appl. Stat., vol. 67, no. 4, pp. 861–879, Aug. 2018, doi: 10.1111/rssc.12254.
D. B. do N. S. Silva, A. F. A. Neves, and S. C. Onel, “Small Domain Estimation for a Brazilian Service Sector Survey,” 59 ISI World Stat. Congr., no. December, p. 6, 2013.
D. K. Bodro, K. Sadik, and B. Sartono, “Kajian peningkatan kualitas pendugaan area kecil melalui transformasi peubah target [tesis],” Bogor: Institut Pertanian Bogor, 2019.
F. A. S. Moura, A. F. Neves, and D. B. do N. Silva, “Small area models for skewed Brazilian business survey data,” J. R. Stat. Soc. Ser. A Stat. Soc., vol. 180, no. 4, pp. 1039–1055, 2017, doi: 10.1111/rssa.12301.
A. R. Nulkarim and I. Y. Wulansari, “M-quantile chambers-dunstan untuk pendugaan area kecil: studi kasus data pengeluaran rumah tangga per kapita di Yogyakarta tahun 2018,” in Seminar Nasional Official Statistics 2021, 2021, vol. 1, pp. 80–89.
Martina and R. Yuristia, “Analisis pendapatan dan pengeluaran rumah tangga petani padi sawah di kecamatan Sawang kabupaten Aceh Utara,” Agrica Ekstensia, vol. 15, no. 1, pp. 56–63, 2021.
[BPS] Badan Pusat Statistik, Statistik Nilai Tukar Petani Provinsi Sulawesi Tenggara 2021. Kendari: BPS Provinsi Sulawesi Tenggara, 2022.
M. Rachmat, “Nilai tukar petani: konsep, pengukuran dan relevansinya sebagai indikator kesejahteraan petani,” J. Agro Ekon., vol. 31, no. 2, pp. 111–122, 2013.
P. Simatupang, M. Rahmat, Supriyati, and M. Maulana, “Kajian isu-isu aktual kebijakan pembangunan pertanian: review dan perumusan indikator kesejahteraan petani,” 2016.
[BPS] Badan Pusat Statistik, Pengeluaran untuk Konsumsi Penduduk Indonesia Per Provinsi: Berdasarkan Hasil Susenas September 2021. Jakarta: Badan Pusat Statistik, 2022.
V. R. S. Ferraz and F. A. S. Moura, “Small area estimation using skew normal models,” Comput. Stat. Data Anal., vol. 56, no. 10, pp. 2864–2874, 2012.
F. E. Supriatin, B. Susetyo, and K. Sadik, “EBLUP method of time series and cross-section data for estimating education index in district Purwakarta,” Indones. J. Stat., vol. 20, no. 7, pp. 34–38, 2015.
H. J. Boonstra, “Time-series small area estimation for unemployment based on a rotating panel survey,” Stat. Netherlands, vol. 17, no. June, pp. 1–39, 2014.
A. Neves, D. Britz, and F. Ant, “Skew normal small area time models for the Brazilian annual service sector survey,” Stat. Transit., vol. 21, no. 4, pp. 84–102, 2020, doi: 10.21307/stattrans-2020-032.
A. Paranata, Wahyunadi, and A. Daeng, “Mengurai model kesejahteraan petani,” Jejak, vol. 5, no. 1, pp. 90–102, 2012.
J. N. . Rao and I. Molina, Small Area Estimation. New Jersey: John Wiley & Sons, 2015.
S. Muchlisoh, A. Kurnia, K. A. Notodiputro, and I. W. Mangku, “Small area estimation of unemployment rate based on unit level model with first order autoregressive time effects,” Appl. Probabilty Stat., vol. 12, no. 2, pp. 51–63, 2017.
G. Chen and S. Luo, “Bayesian hierarchical joint modeling using skew-normal independent distributions,” Commun Stat Simul Comput, vol. 47, no. 5, pp. 1420–1438, 2019.
N. P. Istiqomah and I. Y. Wulansari, “Estimasi angka partisipasi kasar perguruan tinggi level kabupaten/kota di pulau Kalimantan tahun 2020 dengan small area estimation hierarchical bayes beta-logistic,” in Seminar Nasional Official Statistics 2022 Statististic 2022, 2020, pp. 137–146.
[BPS] Badan Pusat Statistik, Provinsi Sulawesi Tenggara Dalam Angka 2022. Kendari: BPS Provinsi Sulawesi Tenggara, 2022.
R. A. Trianto, “Perubahan pola pengeluaran makanan masyarakat Indonesia akibat pandemi covid-19,” J. Ecogen, vol. 4, no. 4, p. 471, 2021, doi: 10.24036/jmpe.v4i4.12093.
Copyright (c) 2024 Titin Yuniarty, Indahwati Indahwati, Aji Hamim Wigena
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.