MODELING DHF IN CENTRAL JAVA USING HYBRID NONPARAMETRIC SPLINE TRUNCATED-FOURIER SERIES APPROACH

  • Tiani Wahyu Utami Department of Statistics, Universitas Muhammadiyah Semarang, Indonesia https://orcid.org/0009-0008-5278-5037
  • Endang Tri Wahyuni Maharani Department of Chemistry Education, Universitas Muhammadiyah Semarang, Indonesia
  • Alwan Fadlurohman Department of Data Sains, Universitas Muhammadiyah Semarang, Indonesia
Keywords: DHF, Fourier Series, GCV, Nonparametric Regression, Spline Truncated

Abstract

Regression analysis aims to determine the relationship and influence of predictor variables on response variables through regression curve. The problem with nonparametric regression research so far is that it only uses one approach, causing the estimation results to be biased, even though each data sub-pattern has its own suitability depending on the approach method used. Therefore, the hybrid method emerged as a development of nonparametric regression. Hybrid models are models that combine approach methods, with the hope of increasing accuracy in modeling analysis. This research was carried out using two non-parametric approaches, namely Spline Truncated and Fourier Series. Dengue Hemorrhagic Fever (DHF) is a disease caused by the dengue virus. DHF is endemic and occurs throughout the year, especially during the rainy season because mosquitoes reproduce optimally. The aim of this research is to estimate the Hybrid Nonparametric Spline Truncated -Fourier Series model and apply the estimation results to data on DHF cases in Central Java. The data used to apply the hybrid nonparametric Spline Truncated-Fourier series regression model is DHF in the city/districts of Central Java. Estimation smoothing parameters uses the GCV (Generalized Cross Validation) method. The best model is selected based on largest R-Square and the smallest MSE. Modeling the disease of DHF cases in Central Java using the Spline Truncated-Fourier Series hybrid estimator produced the best model from the Spline Truncated model with two knot points for each predictor and the Fourier Series model with  value of 9. Based on the results obtained, it can be compared that the Truncated Spline-Fourier Series hybrid model is better than the Spline Truncated model, this can be seen from the largest R-square, namely 99.94% and the smallest MSE.

Downloads

Download data is not yet available.

References

H. Harapan, A. Michie, M. Mudatsir, R. T. Sasmono, and A. Imrie, “Epidemiology of dengue hemorrhagic fever in Indonesia: analysis of five decades data from the National Disease Surveillance,” BMC Res Notes, vol. 12, no. 1, p. 350, 2019, doi: 10.1186/s13104-019-4379-9.

M.H. Atmoko, “Kemenkes catat kasus dengue sampai minggu ke-39 2022 capai 94.355”, ANTARA 17 Oktober 2022 [Online]. Tersedia: https://www.antaranews.com/berita/3184081/kemenkes-catat-kasus-dengue-sampai-minggu-ke-39-2022-capai-94355 [Diakses: 22 Desember 2023].

D. Sri Rejeki, N. Nurhayati, and B. Aji, “A spatiotemporal analysis of dengue hemorrhagic fever in Banyumas, Indonesia,” International Journal of Public Health Science (IJPHS), vol. 10, p. 231, Jan. 2021, doi: 10.11591/ijphs.v10i2.20713.

T. W. Utami, A. Prahutama, A. Karim, and A. R. F. Achmad, “Modelling rice production in Central Java using semiparametric regression of local polynomial kernel approach,” in Journal of Physics Conference Series, in Journal of Physics Conference Series, vol. 1217. May 2019, p. 12108. doi: 10.1088/1742-6596/1217/1/012108.

D. Aydin, M. Memmedli, and R. E. M. Omay, “Smoothing Parameter Selection for Nonparametric Regression Using Smoothing Spline,” European Journal of Pure and Applied Mathematics, vol. 6, no. 2, pp. 222–238, 2013.

T. W. Utami, M. Haris, A. Prahutama, and E. Purnomo, “Optimal knot selection in spline regression using unbiased risk and generalized cross validation methods,” Journal of Physics: Conference Series, vol. 1446, p. 12049, Jan. 2020, doi: 10.1088/1742-6596/1446/1/012049.

S. Wood, Generalized Additive Models: An Introduction With R, Boca Raton: Chapman and Hall/CRC, 2006. doi: 10.1201/9781315370279.

D. A. Widyastuti, A. A. R. Fernandes, and H. Pramoedyo, “Spline estimation method in nonparametric regression using truncated spline approach,” Journal of Physics: Conference Series, vol. 1872, no. 1, p. 12027, May 2021, doi: 10.1088/1742-6596/1872/1/012027.

T. W. Utami, I. M. Nur, and Ismawati, “Fourier series nonparametric regression for the Modelizing of the Tidal,” in Proc. the 3rd International Seminar on Educational Technology: Global Education through Network Learnin, pp. 119–123, 2017.

D. R. Sari Saputro, K. R. Demu, and P. Widyaningsih, “Nonparametric truncated spline regression model on the data of human development index (HDI) in indonesia,” Journal of Physics: Conference Series, vol. 1028, no. 1, p. 012219, 2018, doi: 10.1088/1742-6596/1028/1/012219.

T. W. Utami and A. Prahutama, “Regresi semiparametri spline truncated dengan Software R,” in Seminar Nasional Pendidikan, Sains dan Teknologi, 2017.

D. Ispriyanti, A. Prahutama, and A. Taryono, “Modelling space of spread Dengue Hemorrhagic Fever (DHF) in Central Java use spatial durbin model,” Journal of Physics: Conference Series, vol. 1025, p. 12112, Jan. 2018, doi: 10.1088/1742-6596/1025/1/012112.

B. Sumargo, S. J. Kirana, and S. R. Rohimah, “Dengue hemorrhagic fever modeling using geographically weighted negative binomial regression,” AIP Conf. Proc., vol. 2588, no. 1, p. 050013, Jan. 2023, doi: 10.1063/5.0112673.

R. L. Eubank, Nonparametric Regression and Spline Smoothing, 2nd Edition. New York: Marcel Dekker, 1999.

A. Iriany and A. A. R. Fernandes, “Hybrid Fourier series and smoothing spline path non-parametrics estimation model,” Frontiers in Applied Mathematics and Statistics, vol. 8, 2023. doi: 10.3389/fams.2022.1045098.

A. Prahutama, Suparti, and T. W. Utami, “Modelling fourier regression for time series data- a case study: modelling inflation in foods sector in Indonesia,” Jounal of Physics: Conference Series, vol. 974, no. 1, p. 12067, Mar. 2018, doi: 10.1088/1742-6596/974/1/012067.

Sifriyani, A. R. M. Sari, A. T. R. Dani, and S. Jalaluddin, “Bi-Response truncated spline nonparametric regression with optimal knot point selection using generalized Cross-Validation in diabetes mellitus patient’s blood sugas levels,” Communications in Mathematical Biology and Neuroscience, vol. 2023, 2023, doi: 10.28919/cmbn/7903.

I. Prasetyowati, S. Km, and M. Kes, “Population density and Incidence Rate of Dengue Hemorrhagic Fever (DHF) in Bondowoso distric, East Java,” The Indonesia Journal of Health Science, vol. 5, no. 2, pp. 1–12, 2015.

H. Adeswastoto and B. Setiawan, “Sebaran rumah sehat dan gambaran perilaku penghuni rumah tempat tinggal desa Sitorajo Kari kecamatan Kuansing Tengah,” Prepotif: Jurnal Kesehatan Masyarakat, vol. 4, no. 1, pp. 85–92, Apr. 2023, [Online]. Available: http://journal.universitaspahlawan.ac.id/index.php/prepotif/article/view/6334

Suparti, A. Prahutama, and R. Santoso, “Mix local polynomial and spline truncated: the development of nonparametric regression model,” Journal of Physics: Conference Series, vol. 1025, no. 1, p. 12102, May 2018, doi: 10.1088/1742-6596/1025/1/012102.

E. Madeira, A. Yudiernawati, N. Maemunah, “Hubungan Perilaku Hidup Bersih dan Sehat (PHBS) Ibu dengan Cara Pencegahan Demam Berdarah Dengue,” Nursing News Journal, vol. 4, no. 1, pp. 288-299, 2019, doi: https://doi.org/10.33366/nn.v4i1.1549

Published
2024-07-31
How to Cite
[1]
T. Utami, E. Maharani, and A. Fadlurohman, “MODELING DHF IN CENTRAL JAVA USING HYBRID NONPARAMETRIC SPLINE TRUNCATED-FOURIER SERIES APPROACH”, BAREKENG: J. Math. & App., vol. 18, no. 3, pp. 1459-1470, Jul. 2024.