GROUPING PROVINCES IN INDONESIA BASED ON THE NUMBER OF VILLAGES AFFECTED BY ENVIROMENTAL POLLUTION WITH K-MEDOIDS, FUZZY C-MEANS, AND DBSCAN

  • Idrus Syahzaqi Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Indonesia https://orcid.org/0009-0004-8129-0405
  • Magdalena Effendi Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Indonesia
  • Hasri Rahmawati Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Indonesia
  • Heri Kuswanto Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Indonesia
  • Sediono Sediono Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Indonesia
Keywords: Enviromental Pollution, K-Medoids, Fuzzy C-Means, DBSCAN

Abstract

Pollution can cause the environment to not function properly and ultimately harm humans and other living things. Environmental pollution is a problem that needs to be resolved because it involves the safety, health, and survival of living things. Air pollution in Pekanbaru due to a long dry season has resulted in forest fires. Then, 70% of drinking water is contaminated by fecal waste. In addition, the contamination of the land by the Chevron company resulted in residents suing the company. Until now, there has been no research that has carried out a comparison between methods for grouping villages affected by environmental pollution at the provincial level in Indonesia, so it is important to select the best method for carrying out the grouping. The limitations of this research are the use of three methods for clustering: K-Medoids, Fuzzy C-Means, and DBSCAN. The results showed that Fuzzy C-Means with five clusters have an optimal value compared to DBSCAN with an ICD rate value of 0,351. This method can be used by the government to improve the quality of villages that are clean from pollution in Indonesia, monitoring and evaluation based on the clusters formed.

Downloads

Download data is not yet available.

References

M. S. Muslimah and S. Si, “Dampak pencemaran tanah dan langkah pencegahan,” J. Penelit. Agrisamudra, vol. 2, no. 1, pp. 11–20, 2017.

UNICEF., “Indonesia: Nearly 70 percent of household drinking water sources contaminated by faecal waste,” 2022. https://www.unicef.org/indonesia/press-releases/indonesia-nearly-70-cent-household-drinking-water-sources-contaminated-faecal-waste (accessed Feb. 07, 2022).

F. Yazid and M. Affandes, “Clustering Data Polutan Udara Kota Pekanbaru dengan Menggunakan Metode K-Means Clustering,” J. CoreIT, vol. 3, no. 2, p. 1, 2017.

M. Syukur, “Menelisik Dugaan Pencemaran Lingkungan oleh Perusahaan Minyak di Riau,” LIPUTAN 6, 2021. https://www.liputan6.com/regional/read/4600332/menelisik-dugaan-pencemaran-lingkungan-oleh-perusahaan-minyak-di-riau

R. Sitepu, I. Irmeilyana, and B. Gultom, “Analisis cluster terhadap tingkat pencemaran udara pada sektor industri di Sumatera Selatan,” J. Penelit. sains, vol. 14, no. 3, 2011.

C. B. of Statistics, Village Potential Statistics. JAKARTA: BPS, 2021. [Online]. Available: http://www.bps.go.id/

Joseph F. Hair, Multivariate Data Analysis, vol. 7. 2010. doi: 10.3390/polym12123016.

N. Nasir and S. Sukmawati, “Analysis of Research Data Quantitative and Qualitative,” Edumaspul J. Pendidik., vol. 7, no. 1, pp. 368–373, 2023.

D. Marlina, N. F. Putri, A. Fernando, and A. Ramadhan, “Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak,” J. CoreIT, vol. 4, no. 2, p. 64, 2018.

A. Aryandani, N. Solimun, A. A. Rinaldo Fernandes, and A. Efendi, “Implementation of FCM in Investor Group in the Stock Market Post-Covid-19 Pandemic,” WSEAS Trans. Math., vol. 21, pp. 415–423, 2022.

J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media, 2013.

M. Zhang, “Use density-based spatial clustering of applications with noise (DBSCAN) algorithm to identify galaxy cluster members,” in IOP conference series: earth and environmental science, 2019, vol. 252, no. 4, p. 42033.

B. N. Sari and A. Primajaya, “Penerapan clustering DBSCAN untuk pertanian padi di kabupaten Karawang,” JIKO (Jurnal Inform. dan Komputer), vol. 4, no. 1, pp. 28–34, 2019.

B. S. Ashari, S. C. Otniel, and R. Rianto, “Perbandingan Kinerja K-Means dengan DBSCAN untuk Metode Clustering data Penjualan Online Retail,” J. Siliwangi Seri Sains dan Teknol., vol. 5, no. 2, pp. 64–67, 2019.

N. Nurhaliza and M. Mustakim, “Pengelompokan Data Kasus Covid-19 di Dunia Menggunakan Algoritma DBSCAN: Clustering of Data Covid-19 Cases in the World Using DBSCAN Algorithms,” Indones. J. Inform. Res. Softw. Eng., vol. 1, no. 1, pp. 1–8, 2021.

J.-S. R. Jang, C.-T. Sun, and E. Mizutani, “Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review],” IEEE Trans. Automat. Contr., vol. 42, no. 10, pp. 1482–1484, 1997.

S. A. Mingoti and J. O. Lima, “Comparing SOM neural network with FCM, K-means and traditional hierarchical clustering algorithms,” Eur. J. Oper. Res., vol. 174, no. 3, pp. 1742–1759, 2006.

Published
2024-05-25
How to Cite
[1]
I. Syahzaqi, M. Effendi, H. Rahmawati, H. Kuswanto, and S. Sediono, “GROUPING PROVINCES IN INDONESIA BASED ON THE NUMBER OF VILLAGES AFFECTED BY ENVIROMENTAL POLLUTION WITH K-MEDOIDS, FUZZY C-MEANS, AND DBSCAN”, BAREKENG: J. Math. & App., vol. 18, no. 2, pp. 0923-0936, May 2024.