PREDICTION OF NATURAL GAS PRICES ON THE NEW YORK MERCANTILE EXCHANGE BASED ON A PULSE FUNCTION INTERVENTION ANALYSIS APPROACH

Keywords: ARIMA, Intervention Analysis, Nature Gas, Pulse Function, Russia-Ukraine Conflict

Abstract

Natural gas is a key energy commodity with significant global economic impact, and its pricing is influenced by factors like weather, energy policies, geopolitics, and supply-demand balance. The Russia-Ukraine conflict disrupted Russia’s gas exports, causing price volatility and affecting global markets, including Indonesia. This has heightened the need for accurate price prediction to support policy and investment decisions. Previous studies show ARIMA-GARCH models predict well but need pulse function intervention for sudden shocks. This study aims to apply pulse function intervention analysis, which captures the immediate effects of external events on time-series data, to improve the precision of natural gas price forecasts, aiding government and industry decision-makers. The optimal intervention model for predicting natural gas prices on the New York Mercantile Exchange is the Probabilistic ARIMA (0,2,1) with a pulse function intervention order of b=0, r=2, and s=0. Using this model with the pulse function intervention approach yields consistent fluctuation patterns over time and achieves a MAPE value of 12.2586%, indicating that the model provides good predictive accuracy.

Downloads

Download data is not yet available.

References

A. P. Pratama and Y. B. W. Tama, “PREDIKSI HARGA KOMODITAS GAS ALAM MENGGUNAKAN MODEL BROWNIAN MOTION DAN GEOMETRIC BROWNIAN MOTION,” Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika, vol. 6, no. 2, pp. 73–81, 2023, doi: https://doi.org/10.30605/proximal.v6i2.2655.

C. R. Bakrie, M. O. Delanova, and Y. M. Yani, “PENGARUH PERANG RUSIA DAN UKRAINA TERHADAP PEREKONOMIAN NEGARA KAWASAN ASIA TENGGARA,” 2022. [Online]. Available: https://sridianti.com/konferensi-pbb-tentang-perdagangan-dan-pembangunan-

A.-S. Corbeau and T. Mitrova, “RUSSIA’S GAS EXPORT STRATEGY: ADAPTING TO THE NEW REALITY,” 2024. [Online]. Available: https://energypolicy.

Ambya, T. Gunarto, E. Hendrawaty, F. S. D. Kesumah, and F. K. Wisnu, “FUTURE NATURAL GAS PRICE FORECASTING MODEL AND ITS POLICY IMPLICATION,” International Journal of Energy Economics and Policy, vol. 10, no. 5, pp. 58–63, 2020, doi: https://doi.org/10.32479/ijeep.9676.

E. D. Rosilawati, T. Tarno, and T. Wuryandari, “PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) MENGGUNAKAN MODEL INTERVENSI FUNGSI PULSE,” Jurnal Gaussian, vol. 12, no. 3, pp. 382–391, Feb. 2024, doi: https://doi.org/10.14710/j.gauss.12.3.382-391.

Lorensya, L. Ambarwati, and Y. Mahatma, “ANALISIS MODEL INTERVENSI MULTI INPUT FUNGSI PULSE DAN FUNGSI STEP DENGAN DETEKSI OUTLIER TERHADAP HARGA SAHAM,” Jurnal EurekaMatika, vol. 10, no. 1, pp. 61–72, 2022.doi: https://doi.org/10.17509/jem.v9i2.45387

Muh. Qodri, U. Mukhaiyar, V. Ananda, and S. Maisaroh, “COMPARISON OF STOCK PREDICTION USING ARIMA MODEL WITH MULTIPLE INTERVENTIONS OF STEP AND PULSE FUNCTIONS,” Jurnal Ilmiah Sains, pp. 1–16, Mar. 2024, doi: https://doi.org/10.35799/jis.v24i1.51269.

G. E. P. Box, G. M. Jennkins, G. C. Reinsel, and G. M. Ljung, TIME SERIES ANALYSIS FORECASTING AND CONTROL, 5th ed. Wiley, 2016.

J. Kaur, K. S. Parmar, and S. Singh, “AUTOREGRESSIVE MODELS IN ENVIRONMENTAL FORECASTING TIME SERIES: A THEORETICAL AND APPLICATION REVIEW,” Environmental Science and Pollution Research, vol. 30, no. 8, pp. 19617–19641, Feb. 2023, doi: https://doi.org/10.1007/s11356-023-25148-9.

J. D. Cryer and K.-S. Chan, TIME SERIES ANALYSIS WITH APPLICATIONS IN R SECOND EDITION, 2nd ed. Springer, 2008.doi: https://doi.org/10.1007/978-0-387-75959-3

I. D. Syahputra and A. Karim, “PERBANDINGAN METODE ORDINARY LEAST SQUARE (OLS) DAN REGRESI ROBUST,” Seminar Nasional Pendidikan, 2017.

D. C. Montgomery, C. L. Jennings, and M. Kulahci, INTRODUCTION TO TIME SERIES ANALYSIS AND FORECASTING, 2nd ed. Wiley, 2015.

H. N. Tantika, N. Supriadi, and D. Anggraini, “METODE SEASONAL ARIMA UNTUK MERAMALKAN PRODUKSI KOPI DENGAN INDIKATOR CURAH HUJAN MENGGUNAKAN APLIKASI R DI KABUPATEN LAMPUNG BARAT,” Jurnal Matematika, vol. 17, no. 2, 2018, [Online]. Available: http://ejournal.unisba.ac.idDiterima:26/07/2018Disetujui:03/11/2018PublikasiOnline:30/11/2018

J. J. Montaño Moreno, A. Palmer Pol, A. Sesé Abad, and B. Cajal Blasco, “USING THE R-MAPE INDEX AS A RESISTANT MEASURE OF FORECAST ACCURACY,” Psicothema, vol. 25, no. 4, pp. 500–506, 2013, doi: https://doi.org/10.7334/psicothema2013.23.

M. A. Maricar, “ANALISA PERBANDINGAN NILAI AKURASI MOVING AVERAGE DAN EXPONENTIAL SMOOTHING UNTUK SISTEM PERAMALAN PENDAPATAN PADA PERUSAHAAN XYZ,” Jurnal Sistem dan Informatika (JSI), vol. 13, no. 2, pp. 36–5, 2019.

W. W. S. Wei, TIME SERIES ANALYSIS: UNIVARIATE AND MULTIVARIATE METHODS, 2nd ed. 2006.

Published
2025-09-01
How to Cite
[1]
S. Sediono, T. Saifudin, M. S. Dewanti, and A. I. Azis, “PREDICTION OF NATURAL GAS PRICES ON THE NEW YORK MERCANTILE EXCHANGE BASED ON A PULSE FUNCTION INTERVENTION ANALYSIS APPROACH”, BAREKENG: J. Math. & App., vol. 19, no. 4, pp. 2647-2660, Sep. 2025.