A COMPARISON OF LOGISTIC REGRESSION, MIXED LOGISTIC REGRESSION, AND GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION ON PUBLIC HEALTH DEVELOPMENT IN JAVA

  • Erwan Setiawan Program Study of Mathematics Education, Faculty of Teacher Training and Education, Universitas Suryakancana, Indonesia https://orcid.org/0009-0003-7943-3422
  • Muhammad Azis Suprayogi Department of Statistics, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia https://orcid.org/0000-0002-9860-4608
  • Anang Kurnia Department of Statistics, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia https://orcid.org/0000-0001-9409-2361
Keywords: The Public Health Development Index, Logistic Regression, Mixed Logistic Regression, Geographically Weighted Logistic Regression

Abstract

The Public Health Development Index (Indeks Pembangunan Kesehatan Masyarakat - IPKM) is a combined parameter that reflects progress in health development and is useful for determining areas that need assistance in improving health development. Through IPKM modeling, factors that significantly influence regional public health development can be discovered. This research aims to find an appropriate model for modeling IPKM and determine the factors that significantly influence public health development. The data used is the 2018 IPKM data collected from 119 cities/regencies in Java. We propose three models namely logistic regression (LR), mixed logistic regression (MLR), and geographically weighted logistic regression (GWLR). The research results show that the MLR is the best model for modeling IPKM in Java based on the AIC value criteria. Based on the MLR model, the factors that have a significant influence on public health development are the egg and milk consumption level and the percentage of the number of doctors per thousand population.

 

Downloads

Download data is not yet available.

References

R. Labonte and G. Laverack, Capacity Building in Health Promotion, Part I: For Whom? And for What Purpose? vol. 11: Crit. Public Health, 2001.

World Health Organization (WHO), “World Health Statistics 2021: Monitoring Health for SDGs,” 2021.

D. H. Tjandrarini and dkk, Indeks Pembangunan Kesehatan Masyarakat 2018. Jakarta: Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan, 2019.

Y. Debora, “Indeks Kesehatan Indonesia Masih Sangat Rendah,” tirto.id, 2017. https://tirto.id/indeks-kesehatan-indonesia-masih-sangat-rendah-cBRn (accessed Nov. 28, 2023).

A. M. H. Putri, “Perhatian! Indeks Ketahanan Kesehatan RI Masih Jauh di Bawah,” CNBC Indonesia, 2023, 2023.

World Health Organization (WHO), “Water, Sanitation, Hygiene, and Health,” 2022.

J. Y. Shin, P. Xun, Y. Nakamura, and K. He, “Egg consumption in relation to risk of cardiovascular disease and diabetes: a systematic review and meta-analysis.,” Am. J. Clin. Nutr., vol. 98, no. 1, pp. 146–159, 2013, doi: 10.3945/ajcn.112.051318.

D. Feskanich, W. C. Willett, and G. A. Colditz, “Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women,” Am. J. Clin. Nutr., vol. 77, no. 2, pp. 504–511, 2003, doi: 10.1093/ajcn/77.2.504.

World Health Organization (WHO), “Everybody’s business: Strengthening health systems to improve health outcomes: WHO’s framework for action.,” World Health Organization (WHO), 2016.

M. Fathurahman, “Pemodelan Indeks Pembangunan Kesehatan Masyarakat Kabupaten/Kota di Pulau Kalimantan Menggunakan Pendekatan Regresi Probit,” J. VARIAN, vol. 2, no. 2, pp. 47–54, 1970, doi: 10.30812/varian.v2i2.382.

Q. S. Wardhani, S. S. Handajani, and I. Susanto, “Masyarakat Jawa Timur dengan metode,” J. Apl. Stat. dan Komputasi, vol. 14, no. 2, pp. 1–12, 2022.

U. K. Krismayanto and E. Pasaribu, “Analisis Regresi Spasial Indeks Pembangunan Kesehatan Masyarakat dan Paradoks Simpson Kabupaten/Kota di Pulau Sumatera Tahun 2018,” Semin. Nas. Off. Stat., vol. 2022, no. 1, pp. 1037–1052, 2022, doi: 10.34123/semnasoffstat.v2022i1.1330.

M. A. Santika and Y. Karyana, “Analisis Regresi Logistik Biner dengan Efek Interaksi untuk Memodelkan Angka Fertilitas Total di Jawa Barat,” in Bandung Conf. Ser. Stat., 2022, p. vol. 2, no. 2, pp. 142–151. doi: doi: 10.29313/bcss.v2i2.3555.

I. Haq, M. N. Aidi, A. Kurnia, and E. Efriwati, “A Comparison of Logistic Regression and Geographically Weighted Logistic Regression (Gwlr) on Covid-19 Data in West Sumatra,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 3, pp. 1749–1760, 2023, doi: 10.30598/barekengvol17iss3pp1749-1760.

and S. F. M. Rodrigues, J. de la Riva, “Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression,” Appl. Geogr., vol. 48, pp. 52–63, 2014, doi: 10.1016/j.apgeog.2014.01.011.

M. Fathurahman, Purhadi, Sutikno, and V. Ratnasari, “Pemodelan Geographically Weighted Logistic Regression pada Indeks Pemodelan Geographically Weighted Logistic Regression pada Indeks Pembangunan Kesehatan Masyarakat di Provinsi Papua,” in in Prosiding Seminar Nasional MIPA 2016, 2016, pp. 34–42.

A. Getis, Waldo Tobler (1931-2018): Analytical Cartographer and Regional Scientist. 2020.

A. T. Murray et al., “Overview of Contributions in Geographical Analysis : Waldo Tobler,” Geogr. Anal., vol. 52, pp. 480–493, 2020.

P. Vuttipittayamongkol and E. Elyan, “Neighbourhood-based undersampling approach for handling imbalanced and overlapped data,” Inf. Sci. (Ny)., vol. 509, no. October, pp. 47–70, 2020, doi: 10.1016/j.ins.2019.08.062.

E. Rendón, R. Alejo, C. Castorena, F. J. Isidro-Ortega, and E. E. Granda-Gutiérrez, “Data sampling methods to deal with the big data multi-class imbalance problem,” Appl. Sci., vol. 10, no. 4, 2020, doi: 10.3390/app10041276.

P. McCullagh and J. A. Nelder, Generalized Linear Models second edition. New York: Chapman & Hall, 1989.

A. Agresti, Foundations of Linear and Generalized Linear Models. New Jersey: John Wiley & Sons, Inc, 2015.

C. E. McCulloch and S. R. Searle, Generalized, Linear, and Mixed Models. New Jersey: John Wiley & Sons, Inc, 2000. doi: 10.1002/0471722073.

P. M. Atkinson, S. E. German, D. A. Sear, and M. J. Clark, “Exploring the Relations Between Riverbank Erosion and Geomorphological Controls Using Geographically Weighted Logistic Regression Biometrika,” Geogr. Anal., vol. 35, pp. 59–82, 2003.

M. Fathurahman, Purhadi, Sutikno, and V. Ratnasari, “Geographically Weighted Multivariate Logistic Regression Model and Its Application,” Abstr. Appl. Anal., vol. 2020, 2020, doi: 10.1155/2020/8353481.

M. Fathurahman, Purhadi, Sutikno, and V. Ratnasari, “Hypothesis testing of Geographically weighted bivariate logistic regression,” J. Phys. Conf. Ser., vol. 1417, no. 1, 2019, doi: 10.1088/1742-6596/1417/1/012008.

C. Chasco, I. Garcia, and J. Vicens, “Modeling Spatial Variations in Household Disposable Income With Geographically Weighted Regression,” Munich Pers. RePEc Arch., 2007, [Online]. Available: https://mpra.ub.uni-muenchen.de/1682/%0D

W. S. Cleveland, “Robust Locally Weighted Regression and Smoothing Scatterplots,” J. Am. Stat. Assoc., vol. 74, no. 368, 1979, doi: https://doi.org/10.1080/01621459.1979.10481038.

A. Hirotugu, “A New Look at The Statistical Model Identification,” IEEE Trans. Automat. Contr., vol. 19, no. 6, pp. 716–723, 1974.

D. A. Belsley, Conditioning diagnostics: Collinearity and weak data in regression. New York, USA: John Wiley & Sons, Inc, 1991.

N. Shrestha, “Detecting Multicollinearity in Regression Analysis,” Am. J. Appl. Math. Stat., vol. 8, no. 2, pp. 39–42, 2020, doi: 10.12691/ajams-8-2-1.

Published
2025-01-13
How to Cite
[1]
E. Setiawan, M. A. Suprayogi, and A. Kurnia, “A COMPARISON OF LOGISTIC REGRESSION, MIXED LOGISTIC REGRESSION, AND GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION ON PUBLIC HEALTH DEVELOPMENT IN JAVA”, BAREKENG: J. Math. & App., vol. 19, no. 1, pp. 129-140, Jan. 2025.