SUBDISTRICT CLUSTERING IN WEST JAVA PROVINCE BASED ON DISEASE INCIDENCE OF JKN PARTICIPANTS PRIMARY SERVICES
Abstract
One of the efforts that can be done to optimize health services and the distribution of facilities and infrastructure efficiently in a wide scope is by profiling and clustering areas in the province of West Java to the scope of sub-districts that have similar characteristics of disease category. The methods that will be compared to get the best clustering are hierarchical clustering and ensemble clustering. The data used as the object of research is the BPJS Kesehatan capitation primary service sample data for the 2017-2018 period. Some of the important variables used include: primary disease diagnosis data (ICD-10) of patients at the puskesmas, service time, type of visit, and location of service sub-district. This study uses several evaluation metrics Silhouette coefficient, Dunn index, Davies-Bouldin index, and C-index to determine the optimal number of clusters formed. In addition, descriptive analysis and visualization of the clustering results are also used as considerations in selecting the optimal cluster. Based on the evaluation results, the optimal method is hierarchical clustering with complete linkage. This method produces three clusters: cluster 1 consists of 5 sub-districts that have a high/dominant mean value in almost all disease categories, cluster 2 consists of 26 sub-districts that have a medium mean value, and cluster 3 consists of 589 sub-districts that have a low mean value. Most of the members of clusters 1 and 2 are sub-districts located in the districts/cities around the national capital (DKI Jakarta) and the provincial capital (Bandung) while the members of cluster 3 are mostly sub-districts located in suburban districts/cities or far from the central government.
Downloads
References
Dewan Jaminan Sosial Nasional, “Statistik JKN 2014-2018,” 2020.
I. Nurlinawati, R. Rosita, and S. Werni, “Gambaran Faktor Penyebab Rujukan Di Puskesmas Kota Depok,” Bul. Penelit. Sist. Kesehat., vol. 22, no. 3, pp. 176–183, 2019, doi: 10.22435/hsr.v22i3.512.
W. Budiarto and O. Oktarina, “Analysis of First Level Health Care Facility (FKTP) Readiness as ‘Gatekeeper’ on The JKN Implementation in East Kalimantan and Central Java Year 2014,” Bul. Penelit. Sist. Kesehat., vol. 19, no. 1, pp. 11–19, 2016, doi: 10.22435/hsr.v19i1.4985.11-19.
A. S. Hamur, B. Susetyo, and Indahwati, “Comparing K-Means and Fuzzy C-Means Clustering ( Case : Clustering of Provinces in Indonesia Based on the Indicator of the Health Service in 2015 ),” Int. J. Eng. Manag. Res., vol. 7, no. 3, pp. 387–390, 2017.
C. Suhaeni, A. Kurnia, and R. Ristiyanti, “Perbandingan Hasil Pengelompokan menggunakan Analisis Cluster Berhirarki, K-Means Cluster, dan Cluster Ensemble (Studi Kasus Data Indikator Pelayanan Kesehatan Ibu Hamil),” J. Media Infotama, vol. 14, no. 1, pp. 31–38, 2018, doi: 10.37676/jmi.v14i1.469.
K. Millati, C. Suhaeni, and B. Susetyo, “Penggerombolan Daerah 3T di Indonesia Berdasarkan Rasio Tenaga Kesehatan dengan Metode Penggerombolan Berhierarki dan Cluster Ensemble,” Xplore J. Stat., vol. 10, no. 2, pp. 197–213, 2021, doi: 10.29244/xplore.v10i2.744.
BPJS Kesehatan, “Data Sampel BPJS Kesehatan Tahun 2015-2018,” 2020.
R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 5th ed. New Jersey: Prentice Hall, 2002.
R. Ghaemi, N. Sulaiman, H. Ibrahim, and N. Mustapha, “A survey: Clustering ensembles techniques,” World Acad. Sci. Eng. Technol., vol. 38, pp. 644–653, Feb. 2009.
A. Strehl and J. Ghosh, “Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions,” J. Mach. Learn. Res., vol. 3, pp. 583–617, Jan. 2002, doi: 10.1162/153244303321897735.
K. Saxena, Z. Khan, and S. Singh, “Diagnosis of Diabetes Mellitus using K Nearest Neighbor Algorithm,” Int. J. Comput. Sci. Trends Technol., vol. 2, no. 4, pp. 36–43, 2014.
C. L. Clayman, S. M. Srinivasan, and R. S. Sangwan, “K-means clustering and principal components analysis of microarray data of L1000 landmark genes,” Procedia Comput. Sci., vol. 168, pp. 97–104, Jan. 2020, doi: 10.1016/j.procs.2020.02.265.
G. Rahayu and Mustakim, “Principal Component Analysis Untuk Dimensi Reduksi Data Clustering Sebagai Pemetaan Persentase Sertifikasi Guru Di Indonesia,” in Seminar Nasional Teknologi Informasi Komunikasi dan Industri, 2017, pp. 201–208. [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/3265
A. Izzuddin, “Optimasi Cluster pada Algoritma K-Means dengan Reduksi Dimensi Dataset Menggunakan Principal Component Analysis untuk Pemetaan Kinerja Dosen,” J. ENERGY, vol. 5, no. 2, pp. 41–46, 2015.
E. Fitriani Rafikasari, “Pengelompokan Kabupaten/Kota Di Jawa Timur Berdasarkan Indikator Pendidikan Tahun 2013 Menggunakan Analisis Hierarchial Cluster,” J. Din. Penelit., vol. 16, no. 2, pp. 247–262, 2016, doi: 10.21274/dinamika.2016.16.2.247-262.
D. Rachmatin, “Aplikasi Metode-Metode Agglomerative Dalam Analisis Klaster Pada Data Tingkat Polusi Udara,” Infin. J., vol. 3, no. 2, p. 133, 2014, doi: 10.22460/infinity.v3i2.59.
P. Govender and V. Sivakumar, “Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019),” Atmos. Pollut. Res., vol. 11, no. 1, pp. 40–56, 2020, doi: 10.1016/j.apr.2019.09.009.
Soemartini and E. Supartini, “Analisis K-Means Cluster Untuk Pengelompokan Kabupaten / Kota Di Jawabarat Berdasarkan Indikator Masyarakat,” in Konferensi Nasional Penelitian Matematika dan Pembelajarannya II (KNPMP II), 2017, no. Knpmp Ii, pp. 144–154.
N. Suherni and Maduratna, “Analisis Pengelompokan Kecamatan di Kota Surabaya Berdasarkan Faktor Penyebab Terjadinya Penyakit Tuberkulosis,” J. Sains dan Seni ITS, vol. 2, no. 1, pp. 2337–3520, 2013, [Online]. Available: http://ejurnal2.its.ac.id/index.php/sains_seni/article/view/3083
N. Thamrin and A. W. Wijayanto, “Comparison of Soft and Hard Clustering: A Case Study on Welfare Level in Cities on Java Island,” Indones. J. Stat. Its Appl., vol. 5, no. 1, pp. 141–160, 2021, doi: 10.29244/ijsa.v5i1p141-160.
A. Darmawan, “Penyakit Sistem Respirasi Akibat Kerja,” Jambi Med. J., vol. 1, no. 1, pp. 68–83, 2013, doi: 10.22437/jmj.v1i1.2691.
Dinas Kesehatan Kabupaten Bekasi, “Profil Kesehatan Kabupaten Bekasi 2020,” 2021.
Copyright (c) 2023 Husnun Nashir, Anang Kurnia, Anwar Fitrianto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.