STABILITY ANALYSIS OF THE SIQR MODEL OF DIPHTHERIA DISEASE SPREAD AND MIGRATION IMPACT

  • Mohammad Soleh Department of Mathematics, Faculty of Science and Technology, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia https://orcid.org/0009-0001-3805-574X
  • Mutia Nazvira Department of Mathematics, Faculty of Science and Technology, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia https://orcid.org/0009-0006-4280-6573
  • Wartono Wartono Department of Mathematics, Faculty of Science and Technology, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia https://orcid.org/0009-0003-2283-1729
  • Elfira Safitri Department of Mathematics, Faculty of Science and Technology, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia https://orcid.org/0009-0002-9179-0935
  • Riry Sriningsih Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Padang, Indonesia https://orcid.org/0000-0002-3849-5032
Keywords: Stability Analysis, SIQR Model, Diphtheria Disease, Equilibrium State, Asymptotically Stable

Abstract

Diphtheria is an acute disease that affects the upper respiratory tract caused by Corynebacterium diphtheriae, which can also affect the skin, eyes, and other organs. This article analyzes the stability of the SIQR model of diphtheria disease spread in Mandau District by considering the migration factor. The SIQR model is a development of the SIR model by incorporating the quarantine process as an alternative to reduce morbidity. The purpose of this study is to see the effect of migration on the spread of diphtheria disease in Mandau District through mathematical model simulation. We calculated the disease-free and endemic equilibrium points and the basic reproduction number ( ) of the model. Model parameters were obtained using data from BPS Bengkalis Regency and UPTD Puskesmas Mandau. The calculation resulted in one disease-free equilibrium point and one endemic equilibrium point. If  < 1, then the disease-free equilibrium point is asymptotically stable, and if  > 1, then the endemic equilibrium point is also asymptotically stable. Based on the results of the data analysis, the value of. This value is less than 1, so the equilibrium point obtained is a disease-free and asymptotically stable equilibrium point. This means that the population will be free from diphtheria and the level of migration affects the presence of diphtheria disease in Mandau District.

Downloads

Download data is not yet available.

References

M. Mustafa, I. M. Yusof, M. Jeffree, E. M. Illzam, S. S. Husain, and A. M. Sharifa, “Diphtheria: Clinical Manifestations, Diagnosis, and Role of ImmunizationIn Prevention,” IOSR J. Dent. Med. Sci., vol. 15, no. September 2016, pp. 71–76, 2019, doi: 10.9790/0853-1508037176.

Z. Islam, S. Ahmed, M. M. Rahman, M. F. Karim, and M. R. Amin, “Global Stability Analysis and Parameter Estimation for a Diphtheria Model : A Case Study of an Epidemic in Rohingya Refugee Camp in Bangladesh,” Hindawi, 2022.

E. Hartoyo, “Difteri pada Anak,” Sari Pediatr., vol. 19, no. 5, pp. 300–306, 2018.

G. Puspita, M. Kharis, and Supriyono, “Pemodelan Matematika pada Penyebaran Penyakit Difteri dengan Pengaruh Karantina dan Vaksinasi,” Unnes J. Math., vol. 6, no. 1, p. 26, 2017.

I. Suryani and M. Y. E, “Analisis Kestabilan Model MSEIR Penyebaran Penyakit Difteri Dengan Saturated Incidence Rate,” J. Sains Mat. dan Stat., vol. 2, no. 1, 2016.

Husain, “An SIR mathematical model for Dipterid disease,” 2019, doi: 10.1088/1742-6596/1280/2/022051.

K. P. Putra and M. Rosha, “Model Matematika Tipe SIQR Penyebaran Penyakit Difteri Dengan Pengaruh Vaksinasi,” J. Math. UNP, vol. 7, no. 4, pp. 84–93, 2022.

M. Sato, R. Ratianingsih, and Hajar, “Membangun Model Matematika Penyebaran Penyakit Difteri,” J. Ilm. Mat. dan Terap., vol. 18, no. 2, pp. 221–229, 2021.

Saltina, N. Achmad, Resmawan, and A. R. Nuha, “Model Matematika Tipe SEIQR pada Penyebaran Penyakit Difteri,” Majalah Ilmiah Matematika dan Statistika, vol. 22, no. 1, pp. 14–29, 2022.

F. Illahi and A. Widiana, “The effectiveness of vaccine in the outbreak of diphtheria: mathematical model and simulation The effectiveness of vaccine in the outbreak of diphtheria : mathematical model and simulation,” IOP Conf. Ser. Mater. Sci. Eng., 2018, doi: 10.1088/1757-899X/434/1/012006.

P. Amalia, S. Toaha, and Kasbawati, “Optimal Control of Mathematical Model of Diphtheria Spreading,” Daya Mat. J. Inov. Pendidik. Mat., vol. 10, no. 2, pp. 138–147, 2022, doi: 10.26858/jdm.v10i2.35776.

I. Suryani, Wartono, Aprijon, and R. P, “Kestabilan Model Sird Penyebaran Penyakit Ebola Dengan Pengaruh Adanya Migrasi,” SNTIKI, no. November, pp. 494–504, 2019.

M. Soleh, D. Fatmasari, and M. N. Muhaijir, “Model Matematika Penyebaran Penyakit HIV / AIDS dengan Terapi pada Populasi Terbuka,” J. Sains Mat. dan Stat., vol. 3, no. 1, pp. 20–28, 2017.

M. Soleh and D. Sazmita, “Model Matematika Jumlah Perokok Dengan Dinamika Akar Kuadrat dan Faktor Migrasi,” SNTIKI, pp. 628–634, 2017.

D. K. K. Bengkalis, “Profil Kesehatan Kota Bengkalis,” 2017.

Published
2025-01-13
How to Cite
[1]
M. Soleh, M. Nazvira, W. Wartono, E. Safitri, and R. Sriningsih, “STABILITY ANALYSIS OF THE SIQR MODEL OF DIPHTHERIA DISEASE SPREAD AND MIGRATION IMPACT”, BAREKENG: J. Math. & App., vol. 19, no. 1, pp. 173-184, Jan. 2025.