CLUSTERING OF STATE UNIVERSITIES IN INDONESIA BASED ON PRODUCTIVITY OF SCIENTIFIC PUBLICATIONS USING K-MEANS AND K-MEDOIDS

  • Ermawati Ermawati Department of Mathematics, Faculty of Science and Technology, Universitas Islam Negeri Alauddin Makassar, Indonesia
  • Idhia Sriliana Department of Statistics, Faculty of Mathematics and Natural Science, Universitas Bengkulu, Indonesia
  • Riry Sriningsih Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Padang, Indonesia
Keywords: Clustering, K-Means, K-Medoids, Scientific Publications

Abstract

Scientific publication is a measure of the performance of a university. Universities that are owned and operated by the government and whose establishment is carried out by the President of Republic Indonesia are state universities (PTN). One of the efforts that can be made to determine the quantity and quality of state university scientific publications is to conduct PTN clustering based on the productivity of scientific publications. This clustering aims to see the position of state universities in Indonesia into 3 categories, namely “high”, “medium”, and “low”. One of the clustering methods that can be used is cluster analysis. The cluster analysis used in this study is k-means and k-medoids with Silhoutte's validity. Based on the results of the analysis, it was found that the Silhouette k-means value (0.8018) was higher than the Silhouette k-medoids value (0.7281). Therefore, in this case, it can be concluded that the k-means method is better than the k-medoids. The results of cluster analysis using K-Means are 1) PTN with high productivity of scientific publications, namely ITB, ITS, UGM, and UI. The four PTNs are PTN as Legal Entity (PTN-BH) located in Java, 2) PTN with medium scientific publication productivity consists of 16 PTN which were dominated by PTN-BH and PTN as Public Service Board (PTN-BLU) with the largest location in Java, and 3) PTN with low scientific publication productivity consisted of 102 PTN which were dominated by PTN as general state financial management (PTN-Satker) with most locations outside Java.

Downloads

Download data is not yet available.

References

Undang-undang RI nomor 22 Tahun 1961, vol. 62, no. clase VIII. 1961.

Sevima, “2 Pengertian & Perbedaan PTN-BH, PTN-BLU, PTN-Satker - SEVIMA,” 2019. https://sevima.com/pengertian-perbedaan-ptn-bh-ptn-blu-ptn-satker/

Lukman, Yuniasih, I. Maryati, M. A. Silalahi, and A. Sihombing, Kekuatan 50 institusi ilmiah Indonesia: Profil publikasi ilmiah terindeks Scopus. Indonesia, 2016. [Online]. Available: https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf

Lukman, “Strategi Peningkatan Publikasi Ilmiah Bereputasi,” Surabaya PDII LIPI Jakarta., no. September, pp. 1–47, 2016.

B. A. Pribadi and R. Delfy, “Implementasi Strategi Peta Konsep (Concept Mapping) Dalam Program Tutorial Teknik Penulisan Artikel Ilmiah Bagi Guru,” J. Pendidik. Terbuka Dan Jarak Jauh, vol. 16, no. 2, pp. 76–88, 2015, [Online]. Available: http://jurnal.ut.ac.id/index.php/jptjj/article/view/316

R. A. Johnson and D. W. Wichern, “Applied Multivariate Staistical Analysis,” Applied Multivariate Statistical Analysis. pp. 671–757, 2007.

D. Triyansyah and D. Fitrianah, “Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing,” J. Telekomun. dan Komput., vol. 8, no. 3, p. 163, 2018, doi: 10.22441/incomtech.v8i3.4174.

J. O. Ong, “Implementasi Algotritma K-means clustering untuk menentukan strategi marketing president university,” J. Ilm. Tek. Ind., vol. vol.12, no, no. juni, pp. 10–20, 2013.

F. Nasari and C. J. M. Sianturi, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokkan Penyebaran Diare Di Kabupaten Langkat,” CogITo Smart J., vol. 2, no. 2, pp. 108–119, 2016, doi: 10.31154/cogito.v2i2.19.108-119.

S. Budiman, D. Safitri, and D. Ispriyanti, “Perbandingan Metode K-Means Dan Metode Dbscan Pada Pengelompokan Rumah Kost Mahasiswa Di Kelurahan Tembalang Semarang,” J. Gaussian, vol. 5, no. 4, pp. 757–762, 2016.

L. Bai, J. Liang, and F. Cao, “A multiple k-means clustering ensemble algorithm to find nonlinearly separable clusters,” Inf. Fusion, vol. 61, pp. 36–47, 2020, doi: 10.1016/j.inffus.2020.03.009.

R. Liu, “Data Analysis of Educational Evaluation Using K-Means Clustering Method,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/3762431.

Ghufron, B. Surarso, and R. Gernowo, “Implementation of K- Medoids Clustering for High Education Accreditation Data,” J. Ilm. KURSOR, vol. 10, no. 3, pp. 119–128, 2020.

S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. I. R.H.Zer, and D. Hartama, “Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia,” J. Teknol. Inf., vol. 4, no. 1, pp. 166–173, 2020, doi: 10.36294/jurti.v4i1.1296.

I. Makruf, Lubna, Khasanah, R. Sulaeman, and D. A. Harahap, “Educational data mining on higher education level education costs using clustering techniques in Indonesia,” J. Adv. Res. Dyn. Control Syst., vol. 12, no. 6, pp. 2084–2089, 2020, doi: 10.5373/JARDCS/V12I6/S20201169.

R. Yusuf and D. Novian, “Aplikasi Image Retrieval Pada Varian Ikan Cupang Menggunakan K-Means dan K-Medoids Agoritm,” Jurnal Teknik, vol. 12, no. 2. 2014.

M. Milkhatun, A. A. F. Rizal, N. W. W. Asthiningsih, and A. J. Latipah, “Performance Assessment of University Lecturers: A Data Mining Approach,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 6, no. 2, pp. 73–81, 2020, doi: 10.23917/khif.v6i2.9069.

S. Gultom, S. Sriadhi, M. Martiano, and J. Simarmata, “Comparison analysis of K-Means and K-Medoid with Ecluidience Distance Algorithm, Chanberra Distance, and Chebyshev Distance for Big Data Clustering,” IOP Conf. Ser. Mater. Sci. Eng., vol. 420, no. 1, 2018, doi: 10.1088/1757-899X/420/1/012092.

E. Herman, K. E. Zsido, and V. Fenyves, “Cluster Analysis with K-Mean versus K-Medoid in Financial Performance Evaluation,” Appl. Sci., vol. 12, no. 16, 2022, doi: 10.3390/app12167985.

P. Arora, Deepali, and S. Varshney, “Analysis of K-Means and K-Medoids Algorithm for Big Data,” Phys. Procedia, vol. 78, no. December 2015, pp. 507–512, 2016, doi: 10.1016/j.procs.2016.02.095.

Z. Karaca, “the Cluster Analysis in the Manufacturing Industry With K-Means Method: an Application for Turkey,” Eurasian J. Econ. Financ., vol. 6, no. 3, pp. 1–12, 2018, doi: 10.15604/ejef.2018.06.03.001.

R. Mickey and A. C. Rencher, Methods of Multivariate Analysis, vol. 93, no. 443. 1998. doi: 10.2307/2669873.

Athifaturrofifah, R. Goejantoro, and D. Yuniarti, “Perbandingan Pengelompokan K-Means dan K-Medoids Pada Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Studi Kasus : Data Titik Panas Di Indonesia Pada 28 April 2018),” J. EKSPONENSIAL, vol. 10, no. 2, pp. 143–152, 2019.

L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis. Canada: A John Wiley & Sons, Inc., Publication, 2005.

Published
2023-09-30
How to Cite
[1]
E. Ermawati, I. Sriliana, and R. Sriningsih, “CLUSTERING OF STATE UNIVERSITIES IN INDONESIA BASED ON PRODUCTIVITY OF SCIENTIFIC PUBLICATIONS USING K-MEANS AND K-MEDOIDS”, BAREKENG: J. Math. & App., vol. 17, no. 3, pp. 1617-1630, Sep. 2023.