THE REFLEXIVE EDGE STRENGTH OF THE PENTAGONAL SNAKE GRAPH AND CORONA OF THE OPEN TRIANGULAR LADDER AND NULL GRAPH

  • Diari Indriati Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia https://orcid.org/0000-0002-2889-0557
  • Risma Listya Utami Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia https://orcid.org/0009-0007-9699-9662
  • Putranto Hadi Utomo Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
Keywords: Reflexive Edge Strength, Pentagonal Snake Graph, Corona, Open Triangular Ladder Graph, Null Graph

Abstract

Assume that  be an undirected simple graph with vertex set  and edge set . The  edge irregular reflexive -labeling of graph  is a labeling selects positive integers from 1 to  as edge labels and non negative even numbers from 0 to  as vertex labels, and the weights assigned to each edge are distinct, where .  On graph with  labeling, the weight of  edge  is represented by  which is defined as the sum of edge label and all vertex labels incident to that edge. Reflexive edge strength of graph  is the minimum  of the highest label, denoted by . In this research, reflexive edge strength  for pentagonal snake graph  and corona of open triangular ladder and null graph  will be determined. The method of this research is literature study, the lower bound of  determined by Ryan’s lemma and the upper bound by labeling. The reflexive edge strength of pentagonal snake graph  with  is  for  and  for  The reflexive edge strength of  corona of open triangular ladder and null graph  with n ≥ 3 and m ≥ 1 is  and .

Downloads

Download data is not yet available.

References

W. D. Wallis, "Magic Graphs", Springer Science & Business Media, 2012.

J. A. Gallian, " A Dynamic Survey of Graph Labeling", The Electronic Journal of Combinatories, 2023.

M. Bača, S. Jendrol’, M. Miller, and J. Ryan, “On irregular total labellings,” Discrete Math., vol. 307, no. 11–12, pp. 1378–1388, 2007, doi: 10.1016/j.disc.2005.11.075.

M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, and D. Tanna, “On edge irregular reflexive labellings for the generalized friendship graphs,” Mathematics, vol. 5, no. 4, 2017, doi: 10.3390/math5040067.

D. Tanna, J. Ryan, and A. Semaničová-Feňovčíková, “Edge irregular reflexive labeling of prisms and wheels,” Australas. J. Comb., vol. 69, no. 3, pp. 394–401, 2017.

R. Junetty, D. Indriati, and B. Winarno, “Edge Irregular Reflexive Labeling of Palm Tree Graph

C3−B2,r and C3−B3,r,” AIP Conf. Proc., vol. 2566, no. 1, 2022, doi: 10.1063/5.0116566.

D. Indriati and T. Azzahra, “Edge Irregular Reflexive Labeling on Mongolian Tent Graph (M_(m,3)) and Double Quadrilateral Snake Graph,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 4, pp. 1933–1940, 2023, doi: 10.30598/barekengvol17iss4pp1933-1940.

K. K. Yoong, R. Hasni, G. C. Lau, M. A. Asim, and A. Ahmad, “Reflexive edge strength of convex polytopes and corona product of cycle with path,” AIMS Math., vol. 7, no. 7, pp. 11784–11800, 2022, doi: 10.3934/math.2022657.

D. Indriati, Widodo, and I. Rosyida, “Edge Irregular Reflexive Labeling on Corona of Path and Other Graphs,” J. Phys. Conf. Ser., vol. 1489, no. 1, 2020, doi: 10.1088/1742-6596/1489/1/012004.

I. H. Agustin, Dafik, M. Imam Utoyo, Slamin, and M. Venkatachalam, “The reflexive edge strength on some almost regular graphs,” Heliyon, vol. 7, no. 5, p. e06991, 2021, doi: 10.1016/j.heliyon.2021.e06991.

I. Setiawan and D. Indriati, “Edge Irregular Reflexive Labeling on Sun Graph and Corona of Cycle and Null Graph with Two Vertices,” Indones. J. Comb., vol. 5, no. 1, p. 35, 2021, doi: 10.19184/ijc.2021.5.1.5.

W. I. Saputri and D. Indriati, “Kekuatan sisi refleksif pada graf rantai segitiga ,” SeNa-MaGeStiK., pp. 418–425, July. 16, 2022.

L. A. Zalzabila, D. Indriati, and T. S. Martini, “Edge Irregular Reflexive Labeling on Alternate Triangular Snake and Double Alternate Quadrilateral Snake,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 4, pp. 1941–1948, 2023, doi: 10.30598/barekengvol17iss4pp1941-1948.

S. Nurhayati and Y. Susanti, “An Edge Irregular Reflexive k−labeling of Comb Graphs with Additional 2 Pendants,” J. Mat. Integr., vol. 19, no. 1, p. 91, 2023, doi: 10.24198/jmi.v19.n1.41624.89-108.

V. Rievaldo Wijaya and L. Damayanti Ningrum, “Edge Irregular Reflexive Labeling on Lobster Graph,” J. Math. Sci. Optim., vol. 1, no. 1, pp. 37–43, 2024, doi: 10.31258/jomso.1.1.37-43.

S. Dhanalakshmi and S. Thirunavukkarasu, “Mean Square Cordial Labeling Of Some Pentagonal Snake Graphs,” I3CAC 2021, June. 7-8, 2022. doi: 10.4108/eai.7-6-2021.2308859.

P. Sumathi, A. Rathi, and A. Mahalakshmi, “Quotient Labeling of Corona of Ladder Graphs,” vol. 1, no. 3, pp. 80–85, 2017, doi: 10.29027/IJIRASE.v1.i3.2017.80-85.

Published
2024-10-14
How to Cite
[1]
D. Indriati, R. Utami, and P. Utomo, “THE REFLEXIVE EDGE STRENGTH OF THE PENTAGONAL SNAKE GRAPH AND CORONA OF THE OPEN TRIANGULAR LADDER AND NULL GRAPH”, BAREKENG: J. Math. & App., vol. 18, no. 4, pp. 2757-2766, Oct. 2024.