EDGE IRREGULAR REFLEXIVE LABELING OF DUMBBELL GRAPH, CORONA OF OPEN LADDER, AND NULL GRAPH

  • Thetania Miftakul Zalsa Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia https://orcid.org/0009-0001-7516-7126
  • Diari Indriati Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
  • Titin Sri Martini Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
Keywords: Reflexive Edge Strength, Dumbbell Graph, Corona, Open Ladder Graph, Null Graph

Abstract

Graph  is a simple, connected, undirected graph with vertex set  and edge set . A graph  is called to have an edge irregular reflexive -labeling if its vertices can be labeled with even numbers from  until  and its edges can be labeled with positive integers from  to  such that the weights for all the edges are different, where . The weight of edge uv in graph  with  labeling, denoted by , is defined as sum of the edge label and all vertex labels incident to that edge. The reflexive edge strength of a graph , denoted by , is the value of minimum  of the largest label. In this paper, edge irregular reflexive -labeling for Dumbbell Graph  and corona of open ladder and null graph  will be determined. The reflexive edge strength of the Dumbbell Graph  with  and  is  for  and  for  The reflexive edge strength of the corona of open ladder and null graph  with n ≥ 3 and m ≥ 1 is for  and for .

Downloads

Download data is not yet available.

References

W. D. Wallis, Magic graphs. Springer Science & Business Media, 2012.

J. A. Gallian, “A Dynamic Survey of Graph Labeling,” 2022.

M. Bača, S. Jendrol’, M. Miller, and J. Ryan, “On irregular total labellings,” Discrete Math., vol. 307, no. 11, pp. 1378–1388, 2007, doi: https://doi.org/10.1016/j.disc.2005.11.075.

M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, and D. Tanna, “Note on edge irregular reflexive labelings of graphs,” AKCE Int. J. Graphs Comb., vol. 16, no. 2, pp. 145–157, 2019, doi: https://doi.org/10.1016/j.akcej.2018.01.013.

J. A. Novelia and D. Indriati, “Edge irregular reflexive labeling on banana tree graphs B2,n and B3,n,” AIP Conf. Proc., vol. 2326, no. 1, p. 20016, Feb. 2021, doi: 10.1063/5.0039316.

L. A. Zalzabila, D. Indriati, and T. S. Martini, “Edge Irregular Reflexive Labeling on Alternate Triangular Snake and Double Alternate Quadrilateral Snake,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 4, pp. 1941–1948, 2023, doi: 10.30598/barekengvol17iss4pp1941-1948.

D. Tanna, J. Ryan, and A. Semaničová-Feňovčíková, “Edge irregular reflexive labeling of prisms and wheels,” Australas. J. Comb., vol. 69, no. 3, pp. 394–401, 2017.

D. Indriati and T. Azzahra, “Edge Irregular Reflexive Labeling on Mongolian Tent,” vol. 17, no. 4, pp. 1933–1940, 2023.

N. A. Rahmawati and D. Indriati, “Edge irregular reflexive labeling on umbrella graphs U3,n and U4,n,” AIP Conf. Proc., vol. 2326, no. 1, p. 20021, Feb. 2021, doi: 10.1063/5.0039336.

I. Setiawan and D. Indriati, “Edge irregular reflexive labeling on sun graph and corona of cycle and null graph with two vertices,” vol. 5, no. August 2020, pp. 35–45, 2021, doi: 10.19184/ijc.2021.5.1.5.

D. Indriati and I. Rosyida, “Edge irregular reflexive labeling on Corona of path and other graphs,” in Journal of Physics: Conference Series, 2020, vol. 1489, no. 1, p. 12004.

K.-K. Yoong, R. Hasni, M. Irfan, I. Taraweh, A. Ahmad, and S.-M. Lee, “On the edge irregular reflexive labeling of corona product of graphs with path,” AKCE Int. J. Graphs Comb., vol. 18, no. 1, pp. 53–59, Jan. 2021, doi: 10.1080/09728600.2021.1931555.

I. H. Agustin, Dafik, M. Imam Utoyo, Slamin, and M. Venkatachalam, “The reflexive edge strength on some almost regular graphs,” Heliyon, vol. 7, no. 5, p. e06991, 2021, doi: https://doi.org/10.1016/j.heliyon.2021.e06991.

G. A. Saputri, K. A. Sugeng, D. Froncek, G. A. Saputri, and K. A. Sugeng, “The Odd Harmonious Labeling of Dumbbell and Generalized Prism Graphs The Odd Harmonious Labeling of Dumbbell and Generalized Prism Graphs,” vol. 8600, 2020, doi: 10.1080/09728600.2013.12088738.

J. Wang, Q. Huang, F. Belardo, and E. M. Li Marzi, “A note on the spectral characterization of Dumbbell Graphs,” Linear Algebra Appl., vol. 431, no. 10, pp. 1707–1714, 2009, doi: https://doi.org/10.1016/j.laa.2009.06.009.

Published
2024-10-14
How to Cite
[1]
T. Zalsa, D. Indriati, and T. Martini, “EDGE IRREGULAR REFLEXIVE LABELING OF DUMBBELL GRAPH, CORONA OF OPEN LADDER, AND NULL GRAPH”, BAREKENG: J. Math. & App., vol. 18, no. 4, pp. 2767-2778, Oct. 2024.