HOLT-WINTER METHOD FOR FORECASTING LIQUID ALUMINIUM SULFATE USAGE FOR PROBABILISTIC INVENTORY MODELING Q WITH ERLANG DISTRIBUTION

Keywords: Erlang Distribution, Probabilistic, Holt-Winter's Method, Q Probabilistic Inventory Model

Abstract

Water is a natural resource important for life and daily activities. Water distributed by the Regional Drinking Water Company (PDAM) should include a coagulation process using liquid aluminum sulfate as a coagulant before it can be consumed. Therefore, this research aims to predict the need for liquid aluminum sulfate in PDAM from 2023 to 2024 using Holt-Winter's method. It also aims to evaluate the optimum liquid aluminum sulfate chemical inventory policy using Q probabilistic inventory model with Normal and erlang probabilistic distributions in PDAM. The data was obtained from Tirta Musi PDAM in Palembang City, Indonesia. The results of forecasting liquid aluminum sulfate demand level data with the Holt-Winter multiplicative method provide the smallest MAPE value. The erlang probability distribution assumption has been met through the Kolmogorov Smirnov test method. The erlang probabilistic inventory model provides a more optimal policy solution than the normal probabilistic inventory model, with minimum total cost and higher service level.

Downloads

Download data is not yet available.

References

R. Mayasari and M. Hastarina, “Optimalisasi Dosis Koagulan Alumunium Sulfat dan Poli Alumunium Klorida (PAC) (Studi Kasus PDAM Tirta Musi Palembang).,” vol. 3, no. 2, 2018.

T. J. Permatasari and E. Apriliani, “Optimasi Penggunaan Koagulan dalam Proses Penjernihan Air,” J. Sains dan Seni Pomits, vol. 2, no. 1, pp. 6–11, 2013.

S. A. Lestari, “Efektivitas Penggunaan Bahan Koagulan Dalam Proses Perencanaan Pengolahan Bangunan Air Minum,” J. Tek. Lingkung., vol. 5, no. 03, pp. 21–28, 2017.

H. Hariyanto and R. Riki, “Bibliometrix Analysis: Management Inventory dan Supply Management,” eCo-Fin, vol. 5, no. 3, pp. 223–236, 2023, doi: 10.32877/ef.v5i3.870.

E. Susanti, F. M. Puspita, S. S. Supadi, E. Yuliza, and A. F. Ramadhan, “Improve Fuzzy Inventory Model of Fractal Interpolation with Vertical Scaling Factor,” Sciencetechindonesia.Com, vol. 8, no. 654–659, 2023, doi: 10.26554/sti.2023.8.4.654-659.

E. Susanti et al., “Optimization of Rice Inventory Using Fuzzy Inventory Model and Lagrange Interpolation Method,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 3, pp. 1215–1220, 2023, doi: 10.30598/barekengvol17iss3pp1215-1220.

D. Ayu, S. Fauji, and H. Purnomo, “Controlling Poly Aluminum Cloraide Inventory with the Economic Order Quantity Method at PDAM Nganjuk Regency,” in Management and Business Symposium, 2022, no. July, pp. 152–159, doi: 2962 -2050.

D. C. Dewi, E. R. EW, and S. Suganda, “Planning and Controlling Liquid Aluminum Sulfate Inventory with the EOQ Method Case Study at PDAM Tirta Mayang Jambi City,” J. Sci. Technol., 2019, doi: 10.32493/teknologi.v2i2.7900.

M. Fazri, R. Puspita, and I. K. Hadi, “Controlling biscuit raw material inventory using a probabilistic model Q-back order and Q-lost sales,” United Int. J. Res. Technol., vol. 03, no. 10, pp. 139–144, 2022.

A. Parkhan and I. Djati Widodo, “Material Inventory Control on Probabilistic Demand and Lead Time Using Continuous Review System,” J. Ind. Eng. Halal Ind., vol. 4, no. 2, pp. 62–68, 2023.

R. Sihotang and R. Handayani, “Control Inventory of Raw Materials Using Supply Probabilistic with Q Method ( Continuous Review Method ) in the Animal Feed Industry Shrimp,” J. Sci. Technol. ( JoSTec ), pp. 1–11, 2024.

S. N. Bahagia, Inventory System, First Ed. Bandung, West Java: ITB Press, 2006.

Sono, A. A. Istiningrum, and D. N. Heitasari, “Reducing Pertamax Inventory Costs at a Gas Station by Eliminating Shortage Using Probabilistic Economic Order Quantity,” Proc. 4th Borobudur Int. Symp. Sci. Technol., vol. 2022, no. September 2021, pp. 446–452, 2023, doi: 10.2991/978-94-6463-284-2_50.

F. Ahmad, “Penentuan Metode Peramalan pada Produksi Part New Granada Bowl ST di PT.X,” JISI J. Integr. Sist. Ind., vol. 7, no. 1, p. 31, 2020, doi: 10.24853/jisi.7.1.31-39.

A. Lusiana and P. Yuliarty, “Penerapan Metode Peramalan (Forecasting) Pada Permintaan Atap di PT X,” 2020.

A. Aryati, I. Purnamasari, and Y. N. Nasution, “Forecasting using the method of Holt-Winters Exponential Smoothing (Case Study: Number of Foreign Tourists Visiting Indonesia),” J. EKSPONENSIAL, vol. 11, no. 1, 2020.

T. Umairah, “ARIMA Model Verification With Outlier,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 1, pp. 579–588, 2024.

O. Dwipurwani, F. M. Puspita, S. S. Supadi, and E. Yuliza, “Minitab 20 and Python based-the forecasting of demand and optimal inventory of liquid aluminum sulfate supplies,” Indones. J. Electr. Eng. Comput. Sci., vol. 35, no. 3, pp. 1796–1807, 2024, doi: 10.11591/ijeecs.v35.i3.pp1796-1807.

I. Sofiana;suparti;Rachman, arief;Utami, “Peramlan Jumlah Penumpang Pesawat di Bandara Internasional Ahmad Yani dengan Metode Holt-Winter’s Exponential Smoothing dan Metode Exponential Smoothing Event Based,” Gaussian, vol. 9, pp. 535–545, 2020.

Y. A. Jatmiko, R. L. Rahayu, and G. Darmawan, “Perbandingan Keakuratan Hasil Peramalan Produksi Bawang Merah Metode Holt-Winters dengan Singular Spectrum Analysis (SSA),” J. Mat. “MANTIK,” vol. 3, no. 1, p. 13, May 2017, doi: 10.15642/mantik.2017.3.1.13-24.

M. Yamin Darsyah, “Perbandingan Peramalan Metode Moving Average dan Exponential Smoothing Holt Winter Untuk Menentukan Peramalan Inflasi di Indonesia Comparison of Forecasting Moving Average and Expo,” 2018.

N. N. Aini, A. Iriany, W. H. Nugroho, and F. L. Wibowo, “Comparison of Adaptive Holt-Winters Exponential Smoothing and Recurrent Neural Network Model for Forecasting Rainfall in Malang City,” ComTech Comput. Math. Eng. Appl., vol. 13, no. 2, pp. 87–96, 2022, doi: 10.21512/comtech.v13i2.7570.

P. Pujiharta, Y. D. Darma, and N. R. Wiyanti, “Comparative Analysis of Arima Model and Exponential Smoothing in Predicting Inventory in Automotive Companies,” Budapest Int. Res. Critics Inst. J., pp. 1056–1065, 2022.

A. T. Subekti, “Implementasi Pengendalian Persediaan Meteran Sambungan Baru PDAM Tirta Mayang Dengan Metode EOQ,” J. Tek. Mesin dan Ind., 2022.

N. P. Dewi, “Implementasi Holt-Winters Exponential Smoothing untuk Peramalan Harga Bahan Pangan di Kabupaten Pamekasan,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 11, no. 2, pp. 223–236, 2020, doi: 10.31849/digitalzone.v11i2.4797.

L. H. Hasibuan, S. Musthofa, D. M. Putri, and M. Jannah, “Comparison of Seasonal Time Series Forecasting Using Sarima and Holt Winter’S Exponential Smoothing (Case Study: West Sumatra Export Data),” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 3, pp. 1773–1784, 2023, doi: 10.30598/barekengvol17iss3pp1773-1784.

E. P. Hendri and S. Fadhlia, “Times series data analysis: The Holt-Winters model for rainfall prediction In West Java,” Int. J. Appl. Math. Sci. Technol. Natl. Def., vol. 2, no. 1, pp. 1–8, 2024, doi: 10.58524/app.sci.def.v2i1.325.

T. Otsu and G. Taniguchi, “Kolmogorov–Smirnov type test for generated variables,” Econ. Lett., vol. 195, p. 109401, 2020, doi: 10.1016/j.econlet.2020.109401.

S. Seabold and J. Perktold, “Statsmodels: Econometric and Statistical Modeling with Python,” Proc. 9th Python Sci. Conf., no. Scipy, pp. 92–96, 2010, doi: 10.25080/majora-92bf1922-011.

Published
2025-01-13
How to Cite
[1]
O. Dwipurwani, F. Puspita, S. S. Supadi, E. Yuliza, and D. Qatrunnada, “HOLT-WINTER METHOD FOR FORECASTING LIQUID ALUMINIUM SULFATE USAGE FOR PROBABILISTIC INVENTORY MODELING Q WITH ERLANG DISTRIBUTION”, BAREKENG: J. Math. & App., vol. 19, no. 1, pp. 453-464, Jan. 2025.