CONSUMER PRICE INDEX MODELING USING A MIXED TRUNCATED SPLINE AND KERNEL SEMIPARAMETRIC REGRESSION APPROACH
Abstract
Some semiparametric regression model approaches include spline, kernel, Fourier series, and wavelet. Semiparametric regression modelling can involve more than one independent variable (multivariable), a parametric approach is usually combined with one of the nonparametric approaches, such as combining a parametric approach with a nonparametric kernel. If a consumer price index model can be built based on the variables that influence it, predictions of consumer price percentages can be made, which it is hoped will help the government determine policies to control consumer price inflation, especially in NTB Province. The data used in this research includes the consumer price index and the factors that influence it according to districts/cities in NTB Province from 2022 to April 2024. The data source was obtained from secondary data at BPS NTB Province. This research design uses a mixed semiparametric approach of truncated spline and kernel regression. Based on calculations, the predicted results of the consumer price index in NTB Province show that the predicted data graph is very close to the actual data . Modelling the consumer price index in NTB Province is a model with 2 knot points, where the model efficiency has the smallest GCV value of 0.001507. The model goodness value is 0.99, meaning that the variables used can explain 99% of the model variability.
Downloads
References
L. Hidayati, N. Chamidah, and I. N. Budiantara, “Estimasi Selang Kepercayaan Nilai Ujian Nasional Berbasis Kompetensi Berdasarkan Model Regresi Semiparametrik Multirespon Truncated Spline,” MEDIA STATISTIKA, vol. 13, no. 1, pp. 92–103, Jun. 2020, doi: 10.14710/MEDSTAT.13.1.92-103.
L. Hidayati, N. Chamidah, and I. N. Budiantara, “Bi-Response Semiparametric Regression Model Based on Spline Truncated for Estimating Computer Based National Exam in West Nusa Tenggara,” In Proceeding 1st International Conference on Mathematics and Islam (ICMIs 2018), SCITEPRESS–Science and Technology Publications, p. 357, 2020.
L. Hidayati, N. Chamidah, and I. N. Budiantara,” Spline Truncated Estimator in Multiresponse Semiparametric Regression Model for Computer Based National Exam in West Nusa Tenggara. IOP Conf Ser Earth Environ Sci, vol. 546, no. 5, p. 052029, Jun. 2019, doi: 10.1088/1757-899X/546/5/052029.
L. Hidayati, N. Chamidah, and I. N. Budiantara,” Confidence Interval of Multiresponse Semiparametric Regression Model Parameters Using Truncated Spline. Int. J. Acad. Appl. Res. (IJAAR), vol. 4, no. 1, 2020.
I. N. Budiantara, V. Ratnasari, M. Ratna, and I. Zain, “The Combination of Spline and Kernel Estimator for Nonparametric Regression and its Properties,” Applied Mathematical Sciences, vol. 9, no. 122, pp. 6083–6094, 2015, doi: 10.12988/AMS.2015.58517.
V. Ratnasari, I. N. Budiantara, M. Ratna, and I. Zain, “Estimation of Nonparametric Regression Curve Using Mixed Estimator of Multivariable Truncated Spline and Multivariable Deret,” Global Journal of Pure and Applied Mathematics, vol. 12, no. 6, pp. 5047–5057, 2016.
M. Hadijati, Irwansyah, and N. Fitriyani, “Particle Swarm Optimization pada Model Nonparametrik Campuran Spline Truncated dan Kernel (Studi Kasus: Pemodelan Indeks Pembangunan Manusia Provinsi Nusa Tenggara Barat),” 2019.
N. Fitriyani, M. Hadijati, L. Harsyiah, and M. S. Sauri, “Mixed Truncated Spline and Kernel Nonparametric Regression Model on Population Growth Rate in West Nusa Tenggara Province,” IOP Conf Ser Mater Sci Eng, vol. 1115, no. 1, p. 012054, Mar. 2021, doi: 10.1088/1757-899X/1115/1/012054.
I. N. Budiantara et al., “Modeling Percentage of Poor People in Indonesia Using Kernel and Fourier Series Mixed Estimator in Nonparametric Regression,” Investigacion Operacional, vol. 40, no. 4, pp. 538–550, 2019.
N. Afifah, “Estimator Campuran Kernel dan Deret Fourier dalam Regresi Nonparametrik (Studi Kasus: Pemodelan Persentase Penduduk Miskin di Indonesia),” Institut Teknologi Sepuluh Nopember, Surabaya, 2017.
K. Nisa, I. N. Budiantara, and A. T. Rumiati, “Multivariable Semiparametric Regression Model with Combined Estimator of Fourier Series and Kernel,” IOP Conf Ser Earth Environ Sci, vol. 58, no. 1, p. 012028, Mar. 2017, doi: 10.1088/1755-1315/58/1/012028.
N. Afifah, I. N. Budiantara, and I. N. Latra, “Mixed Estimator of Kernel and Fourier Series in Semiparametric Regression,” J Phys Conf Ser, vol. 855, no. 1, p. 012002, Jun. 2017, doi: 10.1088/1742-6596/855/1/012002.
M. Hadijati, Z. W. Baskara, L. Harsyiah, and N. Fitriyani, “Model Regresi Nonparametrik Campuran Kernel dan Deret Fourier pada Persentase Kemiskinan di Provinsi Nusa Tenggara Barat,” 2021.
K. Nisa, “Model Regresi Semiparametrik Campuran Spline Truncated dan Deret Fourier (Studi Kasus : Angka Harapan Hidup Provinsi Jawa Timur),” Institut Teknologi Sepuluh Nopember, Surabaya, 2017.
D. R. S. Saputro, A. Sukmayanti, and P. Widyaningsih, “The Nonparametric Regression Model Using Fourier Series Approximation and Penalized Least Squares (PLS) (Case on Data Proverty in East Java),” J Phys Conf Ser, vol. 1188, no. 1, p. 012019, Mar. 2019, doi: 10.1088/1742-6596/1188/1/012019.
Rory, “Regresi Campuran Nonparametrik Spline Linier Truncated dan Fungsi Kernel untuk Pemodelan Data Kemiskinan di Provinsi Papua,” Institut Teknologi Sepuluh Nopember, Surabaya, 2016.
W. Härdle, Applied Nonparametric Regression. Cambridge University Press, Oct. 1990, doi: 10.1017/CCOL0521382483.
L. Hidayati, D. Agustini, Ripai, and Awaludin, “Pemodelan Produktivitas Padi Menggunakan Regresi Semiparametrik Spline Truncated,” Journal of Innovation Research and Knowledge, vol. 2, no. 3, pp. 913–916, Aug. 2022, doi: 10.53625/JIRK.V2I3.3404.
R. L. Eubank, Nonparametric Regression and Spline Smoothing. CRC Press, 1999. doi: 10.1201/9781482273144.
W. Härdle and M. Müller, “Multivariate and Semiparametric Kernel Regression,” SFB 373 Discussion Papers, 1997.
Copyright (c) 2025 Lilik Hidayati, Mustika Hadijati, Nur Asmita Purnamasari, Ristiandi Ristiandi, Ni Nyoman Dewi Kartini
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.