CONSUMER PRICE INDEX MODELING USING A MIXED TRUNCATED SPLINE AND KERNEL SEMIPARAMETRIC REGRESSION APPROACH

  • Lilik Hidayati Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Mataram, Indonesia https://orcid.org/0009-0006-7332-1050
  • Mustika Hadijati Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Mataram, Indonesia https://orcid.org/0009-0009-5800-9888
  • Nur Asmita Purnamasari Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Mataram, Indonesia https://orcid.org/0009-0005-4399-058X
  • Ristiandi Ristiandi Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Mataram, Indonesia
  • Ni Nyoman Dewi Kartini Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Mataram, Indonesia
Keywords: Consumer Price Index, Kernel, Regression Semiparametric, Spline Truncated

Abstract

Some semiparametric regression model approaches include spline, kernel, Fourier series, and wavelet. Semiparametric regression modelling can involve more than one independent variable (multivariable), a parametric approach is usually combined with one of the nonparametric approaches, such as combining a parametric approach with a nonparametric kernel. If a consumer price index model can be built based on the variables that influence it, predictions of consumer price percentages can be made, which it is hoped will help the government determine policies to control consumer price inflation, especially in NTB Province. The data used in this research includes the consumer price index and the factors that influence it according to districts/cities in NTB Province from 2022 to April 2024. The data source was obtained from secondary data at BPS NTB Province. This research design uses a mixed semiparametric approach of truncated spline and kernel regression. Based on calculations, the predicted results of the consumer price index in NTB Province show that the predicted data graph  is very close to the actual data . Modelling the consumer price index in NTB Province is a model with 2 knot points, where the model efficiency has the smallest GCV value of 0.001507. The model goodness value  is 0.99, meaning that the variables used can explain 99% of the model variability.

Downloads

Download data is not yet available.

References

L. Hidayati, N. Chamidah, and I. N. Budiantara, “Estimasi Selang Kepercayaan Nilai Ujian Nasional Berbasis Kompetensi Berdasarkan Model Regresi Semiparametrik Multirespon Truncated Spline,” MEDIA STATISTIKA, vol. 13, no. 1, pp. 92–103, Jun. 2020, doi: 10.14710/MEDSTAT.13.1.92-103.

L. Hidayati, N. Chamidah, and I. N. Budiantara, “Bi-Response Semiparametric Regression Model Based on Spline Truncated for Estimating Computer Based National Exam in West Nusa Tenggara,” In Proceeding 1st International Conference on Mathematics and Islam (ICMIs 2018), SCITEPRESS–Science and Technology Publications, p. 357, 2020.

L. Hidayati, N. Chamidah, and I. N. Budiantara,” Spline Truncated Estimator in Multiresponse Semiparametric Regression Model for Computer Based National Exam in West Nusa Tenggara. IOP Conf Ser Earth Environ Sci, vol. 546, no. 5, p. 052029, Jun. 2019, doi: 10.1088/1757-899X/546/5/052029.

L. Hidayati, N. Chamidah, and I. N. Budiantara,” Confidence Interval of Multiresponse Semiparametric Regression Model Parameters Using Truncated Spline. Int. J. Acad. Appl. Res. (IJAAR), vol. 4, no. 1, 2020.

I. N. Budiantara, V. Ratnasari, M. Ratna, and I. Zain, “The Combination of Spline and Kernel Estimator for Nonparametric Regression and its Properties,” Applied Mathematical Sciences, vol. 9, no. 122, pp. 6083–6094, 2015, doi: 10.12988/AMS.2015.58517.

V. Ratnasari, I. N. Budiantara, M. Ratna, and I. Zain, “Estimation of Nonparametric Regression Curve Using Mixed Estimator of Multivariable Truncated Spline and Multivariable Deret,” Global Journal of Pure and Applied Mathematics, vol. 12, no. 6, pp. 5047–5057, 2016.

M. Hadijati, Irwansyah, and N. Fitriyani, “Particle Swarm Optimization pada Model Nonparametrik Campuran Spline Truncated dan Kernel (Studi Kasus: Pemodelan Indeks Pembangunan Manusia Provinsi Nusa Tenggara Barat),” 2019.

N. Fitriyani, M. Hadijati, L. Harsyiah, and M. S. Sauri, “Mixed Truncated Spline and Kernel Nonparametric Regression Model on Population Growth Rate in West Nusa Tenggara Province,” IOP Conf Ser Mater Sci Eng, vol. 1115, no. 1, p. 012054, Mar. 2021, doi: 10.1088/1757-899X/1115/1/012054.

I. N. Budiantara et al., “Modeling Percentage of Poor People in Indonesia Using Kernel and Fourier Series Mixed Estimator in Nonparametric Regression,” Investigacion Operacional, vol. 40, no. 4, pp. 538–550, 2019.

N. Afifah, “Estimator Campuran Kernel dan Deret Fourier dalam Regresi Nonparametrik (Studi Kasus: Pemodelan Persentase Penduduk Miskin di Indonesia),” Institut Teknologi Sepuluh Nopember, Surabaya, 2017.

K. Nisa, I. N. Budiantara, and A. T. Rumiati, “Multivariable Semiparametric Regression Model with Combined Estimator of Fourier Series and Kernel,” IOP Conf Ser Earth Environ Sci, vol. 58, no. 1, p. 012028, Mar. 2017, doi: 10.1088/1755-1315/58/1/012028.

N. Afifah, I. N. Budiantara, and I. N. Latra, “Mixed Estimator of Kernel and Fourier Series in Semiparametric Regression,” J Phys Conf Ser, vol. 855, no. 1, p. 012002, Jun. 2017, doi: 10.1088/1742-6596/855/1/012002.

M. Hadijati, Z. W. Baskara, L. Harsyiah, and N. Fitriyani, “Model Regresi Nonparametrik Campuran Kernel dan Deret Fourier pada Persentase Kemiskinan di Provinsi Nusa Tenggara Barat,” 2021.

K. Nisa, “Model Regresi Semiparametrik Campuran Spline Truncated dan Deret Fourier (Studi Kasus : Angka Harapan Hidup Provinsi Jawa Timur),” Institut Teknologi Sepuluh Nopember, Surabaya, 2017.

D. R. S. Saputro, A. Sukmayanti, and P. Widyaningsih, “The Nonparametric Regression Model Using Fourier Series Approximation and Penalized Least Squares (PLS) (Case on Data Proverty in East Java),” J Phys Conf Ser, vol. 1188, no. 1, p. 012019, Mar. 2019, doi: 10.1088/1742-6596/1188/1/012019.

Rory, “Regresi Campuran Nonparametrik Spline Linier Truncated dan Fungsi Kernel untuk Pemodelan Data Kemiskinan di Provinsi Papua,” Institut Teknologi Sepuluh Nopember, Surabaya, 2016.

W. Härdle, Applied Nonparametric Regression. Cambridge University Press, Oct. 1990, doi: 10.1017/CCOL0521382483.

L. Hidayati, D. Agustini, Ripai, and Awaludin, “Pemodelan Produktivitas Padi Menggunakan Regresi Semiparametrik Spline Truncated,” Journal of Innovation Research and Knowledge, vol. 2, no. 3, pp. 913–916, Aug. 2022, doi: 10.53625/JIRK.V2I3.3404.

R. L. Eubank, Nonparametric Regression and Spline Smoothing. CRC Press, 1999. doi: 10.1201/9781482273144.

W. Härdle and M. Müller, “Multivariate and Semiparametric Kernel Regression,” SFB 373 Discussion Papers, 1997.

Published
2025-01-13
How to Cite
[1]
L. Hidayati, M. Hadijati, N. A. Purnamasari, R. Ristiandi, and N. N. D. Kartini, “CONSUMER PRICE INDEX MODELING USING A MIXED TRUNCATED SPLINE AND KERNEL SEMIPARAMETRIC REGRESSION APPROACH”, BAREKENG: J. Math. & App., vol. 19, no. 1, pp. 581-594, Jan. 2025.