DEVELOPMENT OF CLUSTER INTEGRATION WITH VARIAN BASED STRUCTURAL EQUATION MODELING TO MANAGE HETEROGENEOUS DATA

  • Hanifa Sepriadi Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Indonesia https://orcid.org/0009-0001-6091-7350
  • Atiek Iriany Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Indonesia https://orcid.org/0000-0002-0818-4786
  • Solimun Solimun Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Indonesia https://orcid.org/0000-0003-4510-1932
  • Adji Achmad Rinaldo Fernandes Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Indonesia https://orcid.org/0000-0002-5957-6528
Keywords: Cashless Society, Cluster, Heterogeneous, Structural Equation Modeling

Abstract

In the application of SEM to multivariate data, the individuals collected not only come from the same population but also from several groups (clusters). This data is heterogeneous. When SEM is applied to heterogeneous data, there will be a risk of bias in estimating equations in the measurement and structural models because there are differences between groups in the data. The purpose of this study is to overcome heterogeneous data in modeling cashless behavior with cluster using a dummy approach. This study used primary data from a survey in Bekasi City using a questionnaire with 100 respondents. Based on the study's results, it is known that using clustering in SEM can overcome heterogeneous data, which is indicated by the high coefficient of determination of 96.12%. Banks can use the results of this study to design products and services that are more in line with customer needs and preferences while encouraging financial inclusion in the digital era.

Downloads

Download data is not yet available.

References

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). MULTIVARIATE DATA ANALYSIS (8 ed.). Boston: Pearson.

Solimun, Fernandes, A. A. R., dan Nurjannah. (2017). METODE STATISTIKA MULTIVARIAT PEMODELAN PERSAMAAN STRUKTURAL (SEM) PENDEKATAN WarpPLS. Malang: UB Press.

Bollen. (1989). Structural Equations with Latent Variables. New York: A Wiley-Interscience Publication.

Takasawa, I., Tanioka, K., & Yadohisa, H. (2023). CLUSTERED SPARSE STRUCTURAL EQUATION MODELING FOR HETEROGENEOUS DATA. Journal of Classification, 40(3), 588-613.

Hu, H., Liu, J., Zhang, X., & Fang, M. (2023). AN EFFECTIVE AND ADAPTABLE K-MEANS ALGORITHM FOR BIG DATA CLUSTER ANALYSIS. PATTERN RECOGNITION, 139, 109404.

Aggarwal, C. C., & Reddy, C. K. (2013). DATA CLUSTERING. ALGORITHMS AND APPLICATIONS. Chapman&Hall/CRC Data mining and Knowledge Discovery series, Londra.

Chen, Y. H., Glymour, M., Riley, A., Balmes, J., Duchowny, K., Harrison, R., ... & Bibbins-Domingo, K. (2021). EXCESS MORTALITY ASSOCIATED WITH THE COVID-19 PANDEMIC AMONG CALIFORNIANS 18–65 YEARS OF AGE, BY OCCUPATIONAL SECTOR AND OCCUPATION: March through November 2020. PloS one, 16(6), e0252454.

Solimun & Fernandes, A. A. R., “FAKTOR DETERMINAN PERKEMBANGAN CASHLESS SOCIETY UNTUK MENDUKUNG PEMULIHAN EKONOMI SAAT PANDEMI DENGAN DIMODERASI OLEH FINANCIAL TECHNOLOGY BERBASIS STATISTIKA DAN SAINS DATA”. 2023.

Aggarwal, C. C., & Reddy, C. K. (2013). DATA CLUSTERING. ALGORITHMS AND APPLICATIONS. Chapman&Hall/CRC Data mining and Knowledge Discovery series, Londra.

Fernandes, A. A. R., Budiantara, I. N., Otok, B. W., & Suhartono. (2014). REPRODUCING KERNEL HILBERT SPACE FOR PENALIZED REGRESSION MULTI-PREDICTORS: CASE IN LONGITUDINAL DATA. International Journal of Mathematical Analysis, 8(40), 1951–1961. https://doi.org/http://dx.doi.org/10.12988/ijma.2014.47212

Schumacker, R. E., & Lomax, R. G. (2016). A BEGINNER'S GUIDE TO STRUCTURAL EQUATION MODELING (4th ed.). New York: Routledge.

S. Maunah, “ESTIMASI SKEWNESS (KEMIRINGAN) DENGAN MENGGUNAKAN METODE BOOTSTRAP DAN METODE JACKKNIFE,” Unnes Journal of Mathematics, vol. 6, pp. 143–152, 2017.

Solimun, Fernandes, A. A. R., dan Nurjannah. (2017). METODE STATISTIKA MULTIVARIAT PEMODELAN PERSAMAAN STRUKTURAL (SEM) PENDEKATAN WarpPLS. Malang: UB Press.

Fernandes, A. A. R., Solimun. (2021). ANALISIS REGRESI DALAM PENDEKATAN FLEKSIBEL. UB Press.

Astutik, S., Solimun, & Darmanto. (2018). ANALISIS MULTIVARIAT TEORI DAN APLIKASINYA DENGAN SAS. Malang: UB Press.

Published
2025-04-01
How to Cite
[1]
H. Sepriadi, A. Iriany, S. Solimun, and A. A. Rinaldo Fernandes, “DEVELOPMENT OF CLUSTER INTEGRATION WITH VARIAN BASED STRUCTURAL EQUATION MODELING TO MANAGE HETEROGENEOUS DATA”, BAREKENG: J. Math. & App., vol. 19, no. 2, pp. 1193-1202, Apr. 2025.