HYBRID ARIMA–ANN MODEL FOR AIR QUALITY INDEX PREDICTION IN DKI JAKARTA

  • Wahyuni Windasari Departement of Data Science, Faculty of Science and Technology, Universitas Putra Bangsa , Indonesia https://orcid.org/0009-0000-2668-1746
  • Augistri Putri Pradani Departement of Data Science, Faculty of Science and Technology, Universitas Putra Bangsa , Indonesia https://orcid.org/0009-0008-0797-6504
Keywords: Artificial Neural Network, Air Quality Index, Hybrid ARIMA-ANN, PM2.5

Abstract

Air pollution is a threat to all countries, including Indonesia. One area in Indonesia with poor air quality is DKI Jakarta. One step to minimize the decline in air quality in an area is to predict the air quality index in the future. In this study, a hybrid ARIMA-ANN analysis was conducted, combining the ARIMA method and Artificial Neural Networks to model air quality in DKI Jakarta. The time series data of the air quality index sourced from the DKI Jakarta Environmental Service during January 19-30, 2023, which was observed every hour with a total of 288 data. The results of the study showed that the SAE and RMSE of the ARIMA model were 94.135 and 1.157, respectively, while the SAE and RMSE values ​​of the hybrid ARIMA-ANN model were 61.094 and 1.15. The results of the study showed that the hybrid ARIMA-ANN model had a higher accuracy value compared to the single ARIMA model in describing DKI Jakarta air quality data. This study has limitations in that determining the network architecture in the ANN model is still done by trial and error, so it takes a relatively longer time.

Downloads

Download data is not yet available.

References

World Health Organization, WHO GLOBAL AIR QUALITY GUIDELINES. Geneva, 2021.

B. Doğan, O. M. Driha, D. B. Lorente, and U. Shahzad, “THE MITIGATING EFFECTS OF ECONOMIC COMPLEXITY AND RENEWABLE ENERGY ON CARBON EMISSIONS IN DEVELOPED COUNTRIES,” Sustain. Dev., vol. 29, no. 1, pp. 1–12, 2021, doi: https://doi.org/10.1002/sd.2125.

A. Talaiekhozani and M. R. Talaie, “EVALUATION OF EMISSION INVENTORY OF AIR POLLUTANTS FROM RAILROAD AND AIR TRANSPORTATION IN ISFAHAN METROPOLITAN IN 2016,” Artic. J. Air Pollut. Heal., vol. 2, no. 1, pp. 1–18, 2017, [Online]. Available: http://japh.tums.ac.ir

H. B. Wang F, Li Z, Zhang K, Di B, “AN OVERVIEW OF NON-ROAD EQUIPMENT EMISSIONS IN CHINA,” Atmos. Environ., vol. 132, pp. 283–289, 2016, doi: https://doi.org/10.1016/j.atmosenv.2016.02.046.

IQAir, “WORLD’S MOST POLLUTED CITIES,” 2021. https://www.iqair.com/world-most-polluted-cities?continent=59af92b13e70001c1bd78e53&country=&state=&sort=-rank&page=1&perPage=50&cities= (accessed Nov. 05, 2024).

M. Hadei, S. Saeed, H. Nazari, E. Yarahmadi, M. Kermani, and M. Yarah-, “ESTIMATION OF LUNG CANCER MORTALITY ATTRIBUTED TO LONG-TERM EXPOSURE TO PM2.5 IN 15 IRANIAN CITIES DURING 2015 - 2016; AN AIRQ+ MODELING,” J. Air Pollut. Heal., vol. 2, no. 1, pp. 19–26, 2017.

G. Anchan, A., Shedthi, B.S., Manasa, “MODELS PREDICTING PM 2.5 CONCENTRATIONS—A REVIEW,” in Recent Advances in Artificial Intelligence and Data Engineering. Select Proceedings of AIDE 2020., 2021, pp. 65–83. doi: https://doi.org/10.1007/978-981-16-3342-3_6.

J. J. Liaw, Y. F. Huang, C. H. Hsieh, D. C. Lin, and C. H. Luo, “PM2.5 CONCENTRATION ESTIMATION BASED ON IMAGE PROCESSING SCHEMES AND SIMPLE LINEAR REGRESSION,” Sensors (Switzerland), vol. 20, no. 8, pp. 1–13, 2020, doi: https://doi.org/10.3390/s20082423.

H. H. Hamed et al., “PREDICTING PM2.5 LEVELS OVER THE NORTH OF IRAQ USING REGRESSION ANALYSIS AND GEOGRAPHICAL INFORMATION SYSTEM (GIS) TECHNIQUES,” Geomatics, Nat. Hazards Risk, vol. 12, no. 1, pp. 1778–1796, 2021, doi: https://doi.org/10.1080/19475705.2021.1946602.

Z. Kapic, “MULTIPLE LINEAR REGRESSION MODEL FOR PREDICTING PM2.5 CONCENTRATION IN ZENICA,” in Advanced Technologies, Systems, and Applications V, Springer, Cham, 2021, pp. 335–341. doi: https://doi.org/10.1007/978-3-030-54765-3_23.

S. Gulati, A. Bansal, A. Pal, N. Mittal, A. Sharma, and F. Gared, “ESTIMATING PM2.5 UTILIZING MULTIPLE LINEAR REGRESSION AND ANN TECHNIQUES,” Sci. Rep., vol. 13, no. 1, pp. 1–12, 2023, doi: https://doi.org/10.1038/s41598-023-49717-7.

A. P. Desvina, “PERAMALAN PENCEMARAN UDARA OLEH PARTICULATE MATTER ( PM10 ) DI PEKANBARU DENGAN METODE BOX-JENKINS ( FORECASTING OF AIR POLLUTION BY PARTICULATE MATTER ( PM10 ) IN PEKANBARU WITH BOX-JENKINS METHOD ),” pp. 63–73, 2015.

B. Chrisdayanti and A. Suharsono, “PERAMALAN KANDUNGAN PARTICULATE MATTER (PM10) DALAM UDARA AMBIEN KOTA SURABAYA MENGGUNAKAN DOUBLE SEASONAL ARIMA (DSARIMA),” J. Sains Dan Seni ITS, vol. 4, no. 2, pp. 242–247, 2015.

L. Zhang et al., “TREND ANALYSIS AND FORECAST OF PM2.5 IN FUZHOU, CHINA USING THE ARIMA MODEL,” Ecol. Indic., vol. 95, no. 1, pp. 702–710, 2018, doi: https://doi.org/10.1016/j.ecolind.2018.08.032.

B. N. Ruchjana, A. T. Arianto, K. Parmikanti, and B. Suhandi, “PERAMALAN KONSENTRASI PARTICULATE MATTER 2.5 (PM2.5) MENGGUNAKAN MODEL VECTOR AUTOREGRESSIVE DENGAN METODE MAXIMUM LIKELIHOOD ESTIMATION,” KUBIK J. Publ. Ilm. Mat., vol. 6, no. 1, pp. 1–12, 2021, doi: https://doi.org/10.15575/kubik.v6i1.8046.

J. D. Kurniawan, “PREDIKSI KUALITAS UDARA BERBASIS MODEL LSTM DAN ARIMA,” UNIVERSITAS KRISTEN SATYA WACANA, 2023.

A. Agarwal and M. Sahu, “FORECASTING PM2.5 CONCENTRATIONS USING STATISTICAL MODELING FOR BENGALURU AND DELHI REGIONS,” Environ. Monit. Assess., vol. 195, no. 4, p. 502, 2023, doi: https://doi.org/10.1007/s10661-023-11045-8.

M. Hadiyan Amaly, R. Haiban Hirzi, and P. Studi Statistika, “PERBANDINGAN METODE ANN BACKPROPAGATION DAN ARMA UNTUK PERAMALAN INFLASI DI INDONESIA,” Jambura J. Probab. Stat., vol. 3, no. 2, pp. 61–70, 2022.doi: https://doi.org/10.34312/jjps.v3i2.15440

R. Wongsathan and I. Seedadan, “A HYBRID ARIMA AND NEURAL NETWORKS MODEL FOR PM-10 POLLUTION ESTIMATION : THE CASE OF CHIANG MAI CITY MOOR AREA,” Procedia - Procedia Comput. Sci., vol. 86, no. March, pp. 273–276, 2016, doi: https://doi.org/10.1016/j.procs.2016.05.057.

S. et al. Zuo, X., Guo, H., Shi, “COMPARISON OF SIX MACHINE LEARNING METHODS FOR ESTIMATING PM2.5 CONCENTRATION USING THE HIMAWARI-8 AEROSOL OPTICAL DEPTH,” J. Indian Soc. Remote Sens., vol. 48, no. 9, pp. 1277–1287, 2020, doi: ttps://doi.org/10.1007/s12524-020-01154-z.

L. Zhao, L., Li, Z., & Qu, “Forecasting of Beijing PM2.5 with a hybrid ARIMA model based on integrated AIC and improved GS fixed-order methods and seasonal decomposition.,” Heliyon, vol. 8, no. 12, 2022, doi: d https://doi.org/10.1016/j.heliyon.2022.e12239.

E. Alshawarbeh, A. T. Abdulrahman, and E. Hussam, “STATISTICAL MODELING OF HIGH FREQUENCY DATASETS USING THE ARIMA-ANN HYBRID,” Mathematics, vol. 11, no. 22, 2023, doi: https://doi.org/10.3390/math11224594

O. A. Ejohwomu et al., “MODELLING AND FORECASTING TEMPORAL PM2.5 CONCENTRATION USING ENSEMBLE MACHINE LEARNING METHODS,” Buildings, vol. 12, no. 1, 2022, doi: https://doi.org/10.3390/buildings12010046.

T. Liu, S. Liu, and L. Shi, “ARIMA MODELLING AND FORECASTING,” in Time Series Analysis Using SAS Enterprise Guide. SpringerBriefs in Statistics, Singapore: Springer Singapore, 2020, pp. 61–85.doi: ttps://doi.org/10.1007/978-981-15-0321-4_4

N. B. Tsae, T. Adachi, and Y. Kawamura, “APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR THE PREDICTION OF COPPER ORE GRADE,” Minerals, vol. 13, no. 5, pp. 1–18, 2023, doi: https://doi.org/10.3390/min13050658

V. Ramasubramanian and M. Ray, “Package ‘ ARIMAANN .’” pp. 1–3, 2022. doi: 10.1016/S0925-2312(01)00702-0>.Encoding.

A. Juliana, Hamidatun, and R. Muslima, Modern Forecasting. Yogyakarta: Deepublish, 2019.

P. Wibowo, “PENGARUH PERBEDAAN JUMLAH HIDDEN LAYER DALAM JARINGAN SYARAF TIRUAN TERHADAP PREDIKSI KEBUTUHAN CAPTOPRIL DAN PARACETAMOL PADA RUMAH SAKIT,” Media Apl, vol. 11, no. 2, pp. 118–131, 2019, doi: 10.33488/2.ma.2019.2.207.

A. I. Taloba, “AN ARTIFICIAL NEURAL NETWORK MECHANISM FOR OPTIMIZING THE WATER TREATMENT PROCESS AND DESALINATION PROCESS,” Alexandria Eng. J., vol. 61, no. 12, pp. 9287–9295, 2022, doi: https://doi.org/10.1016/j.aej.2022.03.029.

Published
2025-09-01
How to Cite
[1]
W. Windasari and A. P. Pradani, “HYBRID ARIMA–ANN MODEL FOR AIR QUALITY INDEX PREDICTION IN DKI JAKARTA”, BAREKENG: J. Math. & App., vol. 19, no. 4, pp. 2335-2346, Sep. 2025.