CERTAIN INDEXES OF UNIT GRAPH IN INTEGER MODULO RINGS WITH SPECIFIC ORDERS

  • Sahin Two Lestari Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas of Mataram, Indonesia https://orcid.org/0009-0006-7857-7063
  • Jimboy R. Albaracin Mathematics Program, College of Science, University of The Philippines Cebu, Gorordo Avenue, Philippines https://orcid.org/0000-0003-2862-7502
  • I Gede Adhitya Wisnu Wardhana Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas of Mataram, Indonesia https://orcid.org/0000-0002-1983-1619
Keywords: Harary Index, Randic Index, Schultz Index, Unit Graph, Wiener Index, Zagreb Index

Abstract

Topological indices quantify structural properties of graphs and find wide applications in chemistry, physics, and network analysis. This study investigates several key indices—namely the Harary Index, Wiener Index, Randić Index, Schultz Index, and the Zagreb Indices—within the context of unit graphs derived from the ring of integers modulo. General formulas for these indices are established, demonstrating how they reflect the combinatorial and algebraic characteristics of unit graphs. Each index captures distinct structural aspects: the Wiener Index evaluates global connectivity and correlates with molecular stability and boiling points; the Randić Index highlights molecular branching relevant to enzyme activity; the Harary Index models electronic interactions through distance reciprocals; and the Zagreb Indices and Schultz Index provide insights into bonding properties and molecular interactions. By linking these indices to unit graphs, this work reinforces the synergy between graph theory and algebra, offering a systematic framework to interpret algebraic structures through graph-based invariants. The results not only contribute to theoretical understanding but also suggest potential applications in modeling chemical compounds and complex networks, paving the way for further exploration of topological indices in other algebraically defined graphs.

Downloads

Download data is not yet available.

References

N. Nurhabibah, I. G. A. W. Wardhana, and N. W. Switrayni, “NUMERICAL INVARIANTS OF COPRIME GRAPH OF A GENERALIZED QUATERNION GROUP,” Journal of the Indonesian Mathematical Society, vol. 29, no. 01, pp. 36–44, 2023.doi: https://doi.org/10.22342/jims.29.1.1245.36-44

Nurhabibah, D. P. Malik, H. Syafitri, and I. G. A. W. Wardhana, “SOME RESULTS OF THE NON-COPRIME GRAPH OF A GENERALIZED QUATERNION GROUP FOR SOME N,” AIP Conf Proc, vol. 2641, no. December 2022, p. 020001, 2022, doi: https://doi.org/10.1063/5.0114975.

M. Afdhaluzzikri, I. G. A. W. W. Wardhana, F. Maulana, and H. R. Biswas, “THE NON-COPRIME GRAPHS OF UPPER UNITRIANGULAR MATRIX GROUPS OVER THE RING OF INTEGER MODULO WITH PRIME ORDER AND THEIR TOPOLOGICAL INDICES,” BAREKENG: J. Math. & App, vol. 19, no. 1, pp. 547–0556, 2025, doi: https://doi.org/10.30598/barekengvol19iss1pp547-556.

L. R. W. Putra, Z. Y. Awanis, S. Salwa, Q. Aini, and I. G. A. W. Wardhana, “THE POWER GRAPH REPRESENTATION FOR INTEGER MODULO GROUP WITH POWER PRIME ORDER,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 3, pp. 1393–1400, Sep. 2023, doi: https://doi.org/10.30598/barekengvol17iss3pp1393-1400.

D. P. Malik, M. N. Husni, I. G. A. W. Wardhana, and G. Semil @ Ismail, “THE CHEMICAL TOPOLOGICAL GRAPH ASSOCIATED WITH THE NILPOTENT GRAPH OF A MODULO RING OF PRIME POWER ORDER,” 2024Journal of Fundamental Mathematics and Applications (JFMA), vol. 7, no. 1, pp. 1–9, 2024, doi: https://doi.org/10.14710/jfma.v0i0.20269.

D. S. Ramdani, I. G. A. W. Wardhana, and Z. Y. Awanis, “THE INTERSECTION GRAPH REPRESENTATION OF A DIHEDRAL GROUP WITH PRIME ORDER AND ITS NUMERICAL INVARIANTS,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 3, pp. 1013–1020, Sep. 2022, doi: https://doi.org/10.30598/barekengvol16iss3pp1013-1020.

S. Mondal, N. De, and A. Pal, “TOPOLOGICAL INDICES OF SOME CHEMICAL STRUCTURES APPLIED FOR THE TREATMENT OF COVID-19 PATIENTS,” Polycycl Aromat Compd, vol. 42, no. 4, pp. 1220–1234, 2022, doi: https://doi.org/10.1080/10406638.2020.1770306.

R. Cruz, I. Gutman, and J. Rada, “SOMBOR INDEX OF CHEMICAL GRAPHS,” Appl Math Comput, vol. 399, p. 126018, Jun. 2021, doi: https://doi.org/10.1016/j.amc.2021.126018.

G. Y. Karang, I. G. A. W. Wardhana, N. I. Alimon, and N. H. Sarmin, “ENERGY AND DEGREE SUM ENERGY OF NON-COPRIME GRAPHS ON DIHEDRAL GROUPS,” Journal of the Indonesian Mathematical Society, vol. 31, no. 01, pp. 1900–1900, 2025.doi: https://doi.org/10.22342/jims.v31i1.1900

N. I. Alimon, N. H. Sarmin, and A. Erfanian, “THE SZEGED AND WIENER INDICES FOR COPRIME GRAPH OF DIHEDRAL GROUPS,” in AIP Conference Proceedings, American Institute of Physics Inc., Oct. 2020. doi: https://doi.org/10.1063/5.0018270.

D. Satriawan, Q. Aini, F. Maulana, and I. G. A. W. Wardhana, “MOLECULAR TOPOLOGY INDEX OF A ZERO DIVISOR GRAPH ON A RING OF INTEGERS MODULO PRIME POWER ORDER,” Contemporary Mathematics and Applications, vol. 6, no. 2, pp. 72–82, 2024.doi: https://doi.org/10.20473/conmatha.v6i2.54737

Z. Du, A. Jahanbani, and S. M. Sheikholeslami, “RELATIONSHIPS BETWEEN RANDIC INDEX AND OTHER TOPOLOGICAL INDICES,” Communications in Combinatorics and Optimization, vol. 6, no. 1, pp. 137–154, Dec. 2021, doi: 10.22049/CCO.2020.26751.1138.

N. I. Alimon, N. H. Sarmin, and A. Erfanian, “THE HARARY INDEX OF THE NON-COMMUTING GRAPH FOR DIHEDRAL GROUPS *,” 2020.doi: https://doi.org/10.32802/asmscj.2020.sm26(1.28)

G. Semil Ismail, N. H. Sarmin, N. I. Alimon, and F. Maulana, “THE FIRST ZAGREB INDEX OF THE ZERO DIVISOR GRAPH FOR THE RING OF INTEGERS MODULO POWER OF PRIMES,” Malaysian Journal of Fundamental and Applied Sciences, vol. 19, no. 5, pp. 892–900, Sep. 2023, doi: https://doi.org/10.11113/mjfas.v19n5.2980.

S. R. Islam and M. Pal, “SECOND ZAGREB INDEX FOR FUZZY GRAPHS AND ITS APPLICATION IN MATHEMATICAL CHEMISTRY,” Iranian Journal of Fuzzy Systems, vol. 20, no. 1, pp. 119–136, Jan. 2023, doi: 10.22111/ijfs.2023.7350.

G. Yu, S. Zaman, M. Jabeen, and X. Zuo, “THE STUDY OF PENTAGONAL CHAIN WITH RESPECT TO SCHULTZ INDEX, MODIFIED SCHULTZ INDEX, SCHULTZ POLYNOMIAL AND MODIFIED SCHULTZ POLYNOMIAL,” PLoS One, vol. 19, no. 6 June, Jun. 2024, doi: https://doi.org/10.1371/journal.pone.0304695.

M. N. Husni, H. Syafitri, A. M. Siboro, A. G. Syarifudin, Q. Aini, and I. G. A. W. Wardhana, “THE HARMONIC INDEX AND THE GUTMAN INDEX OF COPRIME GRAPH OF INTEGER GROUP MODULO WITH ORDER OF PRIME POWER,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 3, pp. 961–966, Sep. 2022, doi: https://doi.org/10.30598/barekengvol16iss3pp961-966.

D. F. Anderson, T. Asir, A. Badawi, and T. T. Chelvam, GRAPHS FROM RINGS. Springer International Publishing, 2021. doi: https://doi.org/10.1007/978-3-030-88410-9.

S. T. Lestari, P. K. Dewi, I. G. A. W. Wardhana, and I. N. Suparta, “ALGEBRAIC STRUCTURES AND COMBINATORIAL PROPERTIES OF UNIT GRAPHS IN RINGS OF INTEGER MODULO WITH SPECIFIC ORDERS,” EIGEN MATHEMATICS JOURNAL, vol. 7, no. 2, pp. 89–92, Sep. 2024, doi: https://doi.org/10.29303/emj.v7i2.235.

L. Li, X. Li, and W. Liu, “NOTE ON THE PRODUCT OF WIENER AND HARARY INDICES,” MATCH: Communications in Mathematical and in Computer Chemistry, vol. 91, no. 2, pp. 299–305, 2024, doi: https://doi.org/10.46793/match.91-2.299L.

Published
2025-09-01
How to Cite
[1]
S. T. Lestari, J. R. Albaracin, and I. G. A. Wisnu Wardhana, “CERTAIN INDEXES OF UNIT GRAPH IN INTEGER MODULO RINGS WITH SPECIFIC ORDERS”, BAREKENG: J. Math. & App., vol. 19, no. 4, pp. 2455-2466, Sep. 2025.