STRUCTURAL EQUATION MODELING ANALYSIS ON POVERTY IN WEST KALIMANTAN WITH FINITE MIXTURE IN PARTIAL LEAST SQUARE APPROACH

  • Muhammad Fauzan Department of Mathematics, Mathematics and Natural Science Faculty, Universitas Tanjungpura, Indonesia https://orcid.org/0009-0008-6035-6013
  • Hendra Perdana Department of Mathematics, Mathematics and Natural Science Faculty, Universitas Tanjungpura, Indonesia https://orcid.org/0000-0002-2909-8772
  • Neva Satyahadewi Department of Mathematics, Mathematics and Natural Science Faculty, Universitas Tanjungpura, Indonesia https://orcid.org/0000-0001-8103-1797
Keywords: Finite mixture, Poverty, Segments, West Kalimantan

Abstract

Poverty occurs when individuals or groups lack the necessary resources to fulfill their basic needs. In Indonesia, including West Kalimantan, poverty remains a significant issue influenced by various socio-economic factors. This study aims to identify valid and reliable indicators of poverty and classify regencies/cities in West Kalimantan using the 2023 data from the Central Statistics Agency of West Kalimantan and Indonesia. The analysis applies the Structural Equation Modeling approach with Finite Mixture in Partial Least Squares (FIMIX-PLS). From 19 observed indicators, only 12 were found valid and reliable based on measurement and structural model evaluation. The structural model reveals three significant relationships: the Economy significantly influences Poverty, Health influences Education, and Education influences the Economy. Based on the FIMIX-PLS results, the regencies/cities are segmented into four groups with distinct structural characteristics. Segment 1 reflects the influence of Health on Education, Segment 2 reflects the influence of Health on the Economy, Segment 3 highlights the influence of Economy on Poverty, and Segment 4 captures the influence of Education on the Economy. Detailed interpretations of each segment and their policy implications are presented in the conclusion. The results support the importance of tailored poverty alleviation strategies based on latent regional characteristics and validated model findings.

Downloads

Download data is not yet available.

References

United Nations Development Programme (UNDP), “ENDING POVERTY BY 2030: UNDP’S PERSPECTIVE AND ROLE,” New York, NY, US, 2016. [Online]. Available:: https://www.undp.org/sites/g/files/zskgke326/files/publications/ISSUE_BRIEF_Ending_Poverty_by_2030.pdf

World Health Organization, “SOCIAL DETERMINANTS OF HEALTH - OVERVIEW,” 2024.

A. Sumner, C. Hoy, and E. Ortiz-Juarez, “ESTIMATES OF THE IMPACT OF COVID-19 ON GLOBAL POVERTY,” UNU-WIDER, Helsinki, Finland, Apr. . Doi: https://doi.org/10.35188/UNU-WIDER/2020/800-9

S. Gwariro et al., “POVERTY: WHAT IS IT AND WHAT IS IT NOT? A CONCEPT ANALYSIS,” Int. J. Heal. Sci. Res., vol. 7, no. 5, pp. 345–353, 2017.

Perkumpulan Prakarsa, “SATU DEKADE INDEKS KEMISKINAN MULTIDIMENSI INDONESIA 2012-2021,” Jakarta, 2023.

S. Alkire, THE EFFECT OF COVID-19 ON MULTIDIMENSIONAL POVERTY, no. 10. 2020. [Online]. Available: www.mppn.org

F. Bourguignon and S. Chakravarty, THE MEASUREMENT OF MULTIDIMENSIONAL POVERTY. Springer, 2019.doi: https://doi.org/10.1007/978-981-13-3432-0_7

M. Zainal, M. U. Burhan, and I. Noor, “POVERTY ANALYSIS: POVERTY DETERMINANTS IN WEST KALIMANTAN PROVINCE 2010-2018,” South East Asia J. Contemp. Business, Econ. Law, vol. 21, no. 5, pp. 78–86, 2020.

Badan Pusat Statistik Kalimantan Barat, “PROFIL KEMISKINAN DI KALIMANTAN BARAT SEPTEMBER 2023,” Ber. Resmi Stat., 2023.

E. D. Anggita, A. Hoyyi, and A. Rusgiyono, “ANALISIS STRUCTURAL EQUATION MODELLING PENDEKATAN PARTIAL LEAST SQUARE DAN PENGELOMPOKAN DENGAN FINITE MIXTURE PLS (FIMIX-PLS),” J. Gaussian, vol. 8, no. 1, pp. 35–45, 2019.doi: https://doi.org/10.14710/j.gauss.v8i1.26620

R. N. Meilita, Y. N. Nasution, and M. N. Hayati, “STRUCTURAL EQUATION MODELLING DENGAN PENDEKATAN PARTIAL LEAST SQUARE (STUDI KASUS: PENGARUH LOCUS OF CONTROL, SELF EFFICACY, DAN LINGKUNGAN KERJA TERHADAP KINERJA KARYAWAN KALTIM POST SAMARINDA),” Pros. Semin. Sains dan Teknol. FMIPA Unmul, vol. 1, no. 1, pp. 41–45, 2016.

F. Hahn, C., Johnson, M. D., Herrmann, A., Huber, “CAPTURING CUSTOMER HETEROGENEITY USING A FINITE MIXTURE PLS APPROACH,” Schmalenbach Bus. Rev., vol. 54, no. 3, pp. 243–269, 2002.doi: https://doi.org/10.1007/BF03396655

M. Fordellone and M. Vichi, “STRUCTURAL EQUATION MODELING AND SIMULTANEOUS CLUSTERING THROUGH THE PARTIAL LEAST SQUARES ALGORITHM,” pp. 1–32, 2018.

J. Henseler, “PARTIAL LEAST SQUARES PATH MODELING: QUO VADIS?,” Qual. Quant., vol. 52, no. 1, pp. 1–8, 2018, doi: https://doi.org/10.1007/s11135-018-0689-6.

H. Joshi and D. Chawla, “IDENTIFYING UNOBSERVED HETEROGENEITY IN MOBILE WALLET ADOPTION – A FIMIX-PLS APPROACH FOR USER SEGMENTATION,” Int. J. Bank Mark., vol. 41, no. 1, pp. 210–236, 2023, doi: https://doi.org/10.1108/IJBM-03-2022-0132.

J. F. Hair, G. T. Hult, C. Ringle, and M. Sarstedt, A PRIMER ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING (PLS-SEM). 2017.

Z. Hikmah, H. Wijayanto, and M. N. Aidi, “COMPARISON OF THE CB-SEM AND PLS-SEM MODELS IN THE INFORMATION AND COMMUNICATIONS TECHNOLOGY INDUSTRY IN INDONESIA,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 2, pp. 1151–1164, 2023.doi: https://doi.org/10.30598/barekengvol17iss2pp1149-1162

M. R. Ab Hamid, W. Sami, and M. H. Mohmad Sidek, “DISCRIMINANT VALIDITY ASSESSMENT: USE OF FORNELL & LARCKER CRITERION VERSUS HTMT CRITERION,” J. Phys. Conf. Ser., vol. 890, no. 1, 2017, doi: https://doi.org/10.1088/1742-6596/890/1/012163.

J. F. Hair, G. T. M. Hult, C. M. Ringle, M. Sarstedt, N. P. Danks, and S. Ray, PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING (PLS-SEM) USING R: A WORKBOOK. Springer International Publishing, 2021. doi: https://doi.org/10.1007/978-3-030-80519-7_5.

V. Esposito Vinzi, L. Trinchera, S. Squillacciotti, and M. Tenenhaus, “REBUS-PLS: A RESPONSE-BASED PROCEDURE FOR DETECTING UNIT SEGMENTS IN PLS PATH MODELLING,” Appl. Stoch. Model. Bus. Ind., vol. 24, pp. 439–458, Sep. 2008, doi: https://doi.org/10.1002/asmb.728.

M. A. Mukid, B. W. Otok, and A. Suharsono, “SEGMENTATION IN STRUCTURAL EQUATION MODELING USING A COMBINATION OF PARTIAL LEAST SQUARES AND MODIFIED FUZZY CLUSTERING,” Symmetry (Basel)., vol. 14, no. 11, 2022, doi: https://doi.org/10.3390/sym14112431.

C. M. Ringle, A. Will, and S. Wende, THE FINITE MIXTURE PARTIAL LEAST SQUARES APPROACH - METHODOLOGY AND APPLICATION. 2010.doi: https://doi.org/10.1007/978-3-540-32827-8_9

H. Nassiri and S. I. Mohammadpour, “INVESTIGATING SPEED-SAFETY ASSOCIATION: CONSIDERING THE UNOBSERVED HETEROGENEITY AND HUMAN FACTORS MEDIATION EFFECTS,” PLoS One, vol. 18, no. 2 February, pp. 1–26, 2023, doi: https://doi.org/10.1371/journal.pone.0281951.

A. Kuckertz, C. Bulut, and L. Brändle, “UNOBSERVED HETEROGENEITY IN FIRM PERFORMANCE: THE ALIGNMENT OF ENTREPRENEURIAL ORIENTATION AND ORGANIZATIONAL ERROR MANAGEMENT CULTURE,” J. Bus. Res., vol. 179, no. December 2022, 2024, doi: https://doi.org/10.1016/j.jbusres.2024.114701.

R. R. Nuryanti and T. Soebagijo, “SEM-PLS UNTUK ANALISIS STRUKTUR KEMISKINAN PADA MASA PANDEMI COVID-19,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 195–203, 2021, doi: https://doi.org/10.34123/semnasoffstat.v2021i1.836.

B. Adhitya, A. Prabawa, and H. Kencana, “ANALISIS PENGARUH PENDIDIKAN, KESEHATAN, SANITASI DAN RATA-RATA JUMLAH ANGGOTA KELUARGA PER RUMAH TANGGA TERHADAP KEMISKINAN DI INDONESIA,” Ekon. J. Econ. Bus., vol. 6, no. 1, p. 288, 2022, doi: https://doi.org/10.33087/ekonomis.v6i1.501.

A. R. Hakim, “KONSEP LANDASAN DASAR PENDIDIKAN KARAKTER DI INDONESIA,” J. Educ., vol. 6, no. 1, pp. 2361–2373, 2023, doi: https://doi.org/10.31004/joe.v6i1.3258.

E. P. Sari and Novianti, “PENGARUH PDRB TERHADAP KEMISKINAN DI KALIMANTAN BARAT TAHUN 2017–2022,” EKODESTINASI J. Ekon. Bisnis, dan Pariwisata, vol. 2, no. 1, pp. 36–56, 2024, doi: https://doi.org/10.59996/ekodestinasi.v2i1.409.

Alkire, S., Kanagaratnam, U., and N. Suppa, “THE GLOBAL MULTIDIMENSIONAL POVERTY INDEX (MPI) 2020,” 2020.

A. Maru, W. Jekale, and B. Asteray, “INVESTIGATING THE IMPACT OF LEAN CONSTRUCTION PRINCIPLES ON CONTRACTORS’ PROJECT PERFORMANCE IN ETHIOPIA USING PLS-SEM,” J. Proj. Manag., vol. 9, no. 3, pp. 227–238, 2024, doi: https://doi.org/10.5267/j.jpm.2024.4.004.

J. Hair and A. Alamer, “PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING (PLS-SEM) IN SECOND LANGUAGE AND EDUCATION RESEARCH: GUIDELINES USING AN APPLIED EXAMPLE,” Res. Methods Appl. Linguist., vol. 1, no. 3, 2022, doi: https://doi.org/10.1016/j.rmal.2022.100027.

Published
2025-11-24
How to Cite
[1]
M. Fauzan, H. Perdana, and N. Satyahadewi, “STRUCTURAL EQUATION MODELING ANALYSIS ON POVERTY IN WEST KALIMANTAN WITH FINITE MIXTURE IN PARTIAL LEAST SQUARE APPROACH”, BAREKENG: J. Math. & App., vol. 20, no. 1, pp. 0001-0016, Nov. 2025.