BIRESPONSE SPLINE TRUNCATED NONPARAMETRIC REGRESSION MODELING FOR LONGITUDINAL DATA ON MONTHLY STOCK PRICES OF THREE PRIVATE BANKS IN INDONESIA

  • Reza Pahlepi Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Bengkulu, Indonesia https://orcid.org/0009-0000-8913-1864
  • Idhia Sriliana Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Bengkulu, Indonesia https://orcid.org/0000-0003-3926-4129
  • Winalia Agwil Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Bengkulu, Indonesia https://orcid.org/0009-0005-5893-3879
  • Cinta Rizki Oktarina Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Bengkulu, Indonesia https://orcid.org/0009-0007-3186-7220
Keywords: Biresponse Modeling, Longitudinal Data, Nonparametric Regression, Stock Prices in the Banking Sector, Truncated Spline, Weighted Least Squares

Abstract

This study investigates the application of a truncated spline nonparametric regression model for biresponse analysis of longitudinal data, focusing on modeling monthly stock prices specifically opening and closing prices of three private banks in Indonesia: Bank Mayapada, Bank Mega, and Bank Sinar Mas. The data used in this research are secondary data sourced from the website Id.Investing.com and monthly financial statement publications of three private banks in Indonesia. Longitudinal data, combining cross-sectional and time-series dimensions, are utilized to capture trends and patterns not detectable in traditional cross-sectional analysis. The truncated spline method is selected for its adaptability to nonlinear relationships and abrupt data behavior changes. The model incorporates three predictor variables traded stock volume, total assets, and total liabilities and evaluates their influence on stock prices. Assumptions of longitudinal data are validated using the Ljung-Box autocorrelation test, Bartlett’s sphericity test, and Pearson correlation. Results confirm significant within-subject correlations, independence between subjects, and strong interdependence between response variables. The optimal configuration is determined using Generalized Cross Validation (GCV), with up to three knots considered for segmentation. Weighted Least Squares (WLS) is employed for parameter estimation, accounting for within-subject correlations. Model evaluation based on Mean Absolute Percentage Error (MAPE) indicates high accuracy, with all MAPE values below 5%. The highest MAPE value is 4.41% for the closing price of Bank Mayapada, while the lowest is 2.65% for the opening price of the same bank. The segmentation analysis reveals that traded stock volume and total assets positively influence stock prices, while total liabilities exhibit a predominantly negative impact. The model is limited to internal financial indicators and does not include external macroeconomic factors such as interest rates or inflation. This study is the first to apply a biresponse truncated spline nonparametric regression approach to analyze stock prices of private banks in Indonesia by simultaneously modeling both opening and closing prices, providing a flexible and effective method for capturing complex patterns in longitudinal financial data.

Downloads

Download data is not yet available.

References

D. C. Montgomery and E. A. P. G. G. Vining, LINEAR REGRESSION ANALYSIS, 6th ed. JOHN WILEY & SONS, INC, 2021. doi: 10.1201/9780203910993.ch7.

H. Wu and J. T. Zhang, NONPARAMETRIC REGRESSION METHODS FOR LONGITUDINAL DATA ANALYSIS: Mixed-Effects Modeling Approaches, no. March. New York: John Wiley & Sons, 2006. doi: 10.1002/0470009675.

A. T. R. Dani, L. Ni’matuzzahroh, V. Ratnasari, and I. N. Budiantara, “PEMODELAN REGRESI NONPARAMETRIK SPLINE TRUNCATED PADA DATA LONGITUDINAL,” Inferensi, vol. 4, no. 1, p. 47, 2021, doi: https://doi.org/10.12962/j27213862.v4i1.8737.

I. N. Budiantara, REGRESI NONPARAMETRIK SPLINE TRUNCATED. Surabaya: ITS Press, 2019.

W. Hardle, APPLIED NONPARAMETRIC REGRESSION. New York: Cambridge University Press, 1994.doi: https://doi.org/10.2307/2533418

R. L. Eubank, NONPARAMETRIC REGRESSION AND SPLINE SMOOTHING, 2nd ed. New York: Marcel Dekker, 1999.doi: https://doi.org/10.1201/9781482273144

Rismal, “ESTIMASI MODEL CAMPURAN SPLINE TRUNCATED DAN KERNEL DALAM REGRESI ESTIMATE OF MIXTURE MODEL OF SPLINE TRUNCATED AND KERNEL IN MULTIVARIABLE,” Institut ZTeknonlogi Sepuluh November, 2016.doi: https://doi.org/10.1063/1.4952565

M. Astuti, “SELANG KEPERCAYAAN KURVA REGRESI NONPARAMETRIK DENGAN ERROR LOG NORMAL BERDASARKAN ESTIMATOR KERNEL,” Skripsi, Universitas Airlangga, 2018.

I. W. Rosanti and I. N. Budiantara, “PEMODELAN FAKTOR-FAKTOR YANG MEMPENGARUHI MORBIDITAS DI JAWA TENGAH MENGGUNAKAN REGRESI NONPARAMETRIK SPLINE TRUNCATED,” Inferensi, vol. 3, no. 2, p. 107, 2020.doi: https://doi.org/10.12962/j27213862.v3i2.7712

A. P. Anisar, S. Sifriyani, and A. T. R. Dani, “ESTIMATION OF A BIRESPONSE TRUNCATED SPLINE NONPARAMETRIC REGRESSION MODEL ON LIFE EXPECTANCY AND PREVALENCE OF UNDERWEIGHT CHILDREN IN INDONESIA,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 4, pp. 2011–2022, 2023, doi: https://doi.org/10.30598/barekengvol17iss4pp2011-2022.

M. Sholikha, M. Susilawati, and I. G. A. M. Srinadi, “PEMODELAN NILAI KURS TERHADAP HARGA SAHAM PADA DATA LONGITUDINAL MENGGUNAKAN REGRESI NONPARAMETRIK SPLINE,” E-Jurnal Mat., vol. 8, no. 4, p. 259, 2019, doi: https://doi.org/10.24843/MTK.2019.v08.i04.p262.

M. M. Tarmizi, EKONOMETRIKA: MODEL & APLIKASI. Eureka, 2023.

I. Sriliana, I. N. Budiantara, and V. Ratnasari, “THE PERFORMANCE OF MIXED TRUNCATED SPLINE-LOCAL LINEAR NONPARAMETRIC REGRESSION MODEL FOR LONGITUDINAL DATA,” MethodsX, vol. 12, no. July 2023, 2024, doi: https://doi.org/10.1016/j.mex.2024.102652.

A. A. R. Fernandes, “ESTIMATOR SPLINE DALAM REGRESI NONPARAMETRIK BIRESPONSE UNTUK (STUDI KASUS PADA PASIEN PENDERITA TB PARU DI MALANG),” Disertasi, Institut Teknologi Sepuluh November, 2016.

I. Sriliana, I. N. Budiantara, and V. Ratnasari, “POVERTY GAP INDEX MODELING IN BENGKULU PROVINCE USING TRUNCATED SPLINE REGRESSION FOR LONGITUDINAL DATA,” AIP Conf. Proc., vol. 2975, no. 1, 2023, doi: https://doi.org/10.1063/5.0181178.

I. Sriliana, I. N. Budiantara, and V. Ratnasari, “A TRUNCATED SPLINE AND LOCAL LINEAR MIXED ESTIMATOR IN NONPARAMETRIC REGRESSION FOR LONGITUDINAL DATA AND ITS APPLICATION,” Symmetry (Basel)., vol. 14, no. 12, 2022, doi: https://doi.org/10.3390/sym14122687.

A. B. Padatuan, S. Sifriyani, and S. Prangga, “PEMODELAN ANGKA HARAPAN HIDUP DAN ANGKA KEMATIAN BAYI DI KALIMANTAN DENGAN REGRESI NONPARAMETRIK SPLINE BIRESPONSE,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 2, pp. 283–296, 2021, doi: https://doi.org/10.30598/barekengvol15iss2pp283-296.

A. Islamiyati et al., “THE USE OF PENALIZED WEIGHTED LEAST SQUARE TO OVERCOME CORRELATIONS BETWEEN TWO RESPONSES,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 4, pp. 1497–1504, 2022, doi: https://doi.org/10.30598/barekengvol16iss4pp1497-1504.

W. Aydi and M. Alatiyyah, “PARETO PARAMETER ESTIMATION BY MERGING LOCALLY WEIGHTED MEDIAN OF MULTIPLE NEURAL NETWORKS AND WEIGHTED LEAST SQUARES,” Alexandria Eng. J., vol. 87, pp. 524–532, 2024, doi: https://doi.org/10.1016/j.aej.2023.12.063.

S. Sifriyani, A. T. R. Dani, M. Fauziyah, and Z. Mar’ah, “MIXED ESTIMATORS OF TRUNCATED SPLINE-EPANECHNIKOV KERNEL ON NONPARAMETRIC REGRESSION AND ITS APPLICATIONS,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 4, pp. 2023–2032, 2023, doi: https://doi.org/10.30598/barekengvol17iss4pp2023-2032.

B. Mu, T. Chen, and L. Ljung, “ASYMPTOTIC PROPERTIES OF GENERALIZED CROSS VALIDATION ESTIMATORS FOR REGULARIZED SYSTEM IDENTIFICATION⁎,” IFAC-PapersOnLine, vol. 51, no. 15, pp. 203–208, 2018, doi: https://doi.org/10.1016/j.ifacol.2018.09.130.

C. R. Oktarina, I. Sriliana, and S. Nugroho, “Penalized Spline Semiparametric Regression for Bivariate Response in Modeling Macro Poverty Indicators,” Indones. J. Appl. Stat., vol. 8, no. 1, pp. 1–15, 2025, doi: https://doi.org/10.13057/ijas.v8i1.94370.

S. Kim and H. Kim, “A NEW METRIC OF ABSOLUTE PERCENTAGE ERROR FOR INTERMITTENT DEMAND FORECASTS,” Int. J. Forecast., vol. 32, no. 3, pp. 669–679, 2016, doi: https://doi.org/10.1016/j.ijforecast.2015.12.003.

Published
2025-09-01
How to Cite
[1]
R. Pahlepi, I. Sriliana, W. Agwil, and C. R. Oktarina, “BIRESPONSE SPLINE TRUNCATED NONPARAMETRIC REGRESSION MODELING FOR LONGITUDINAL DATA ON MONTHLY STOCK PRICES OF THREE PRIVATE BANKS IN INDONESIA”, BAREKENG: J. Math. & App., vol. 19, no. 4, pp. 2467-2480, Sep. 2025.