MODELING POVERTY IN WEST JAVA PROVINCE USING NEGATIVE BINOMIAL REGRESSION WITH PENALIZED SMOOTHLY CLIPPED ABSOLUTE DEVIATION
Abstract
The number of poor people is an example of discrete or count data. One commonly used regression model for count responses is the Negative Binomial regression. Regression modeling with many predictor variables results in the problem of multicollinearity. This condition causes the parameter estimator to become unstable. One method to overcome this problem is to use the penalty function to optimize the selection of predictor variables. This study aims to analyze the factors influencing the number of poor people in West Java Province using Negative Binomial regression with the Smoothly Clipped Absolute Deviation (SCAD) penalty function. The research data was sourced from the Central Bureau of Statistics in 2022, covering 27 districts/cities in West Java Province with 21 predictor variables. The method applied selects variables and estimates parameters simultaneously in the Negative Binomial regression model. Based on the AIC value, it was found that the Negative Binomial penalized SCAD model (AIC = 628.12) had better performance than the Negative Binomial regression model (AIC = 634.34). The Negative Binomial penalized SCAD regression model yielded five significant predictor variables with value of 92.8%. This model is simpler than the Negative Binomial regression model with six predictor variables. The regional minimum wage, number of cooperatives, percentage of the population who have health insurance, the pure college enrollment rate, and non-food expenditure are important variables as factors affecting the number of poor people in West Java Province.
Downloads
References
M. A. M. Wibisono and T. Sirait, “MULTIDIMENSIONAL POVERTY MODELING IN CENTRAL JAVA, DI YOGYAKARTA, AND EAST JAVA PROVINCES,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 18, no. 3, pp. 1939–1954, Jul. 2024, doi: https://doi.org/10.30598/barekengvol18iss3pp1939-1954.
Badan Pusat Statistik, “PROVINSI JAWA BARAT DALAM ANGKA,” Jawa Barat, 2023.
[BPS] Badan Pusat Statistik, “DATA DAN INFORMASI KEMISKINAN KABUPATEN/KOTA,” Jakarta, 2022.
M. Kasim, KARAKTERISTIK KEMISKINAN DI INDONESIA DAN STRATEGI PENANGGULANGANNYA: STUDI KASUS DI PADANG PARIAMAN. Jakarta: Indomedia, 2006.
E. H. Jacobus, P. Kindangen, and E. N. Walewangko, “ANALYSIS OF FACTORS AFFECTING HOUSEHOLD POVERTY IN NORTH SULAWESI (ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KEMISKINAN RUMAH TANGGA DI SULAWESI UTARA),” Jurnal Pembangunan Ekonomi Dan Keuangan Daerah, vol. 19, no. 3, 2018.doi: https://doi.org/10.35794/jpekd.19900.19.7.2018
Munira and H. Juliansyah, “ANALYSIS OF THE INFLUENCE OF POPULATION DENSITY, PER CAPITA EXPENDITURE, AND OPEN UNEMPLOYMENT RATE ON THE POOR POPULATION IN ACEH PROVINCE FROM 2000 TO 2019 (ANALISIS PENGARUH KEPADATAN PENDUDUK, PENGELUARAN PERKAPITA, DAN TINGKAT PENGANGGURAN TERBUKA TERHADAP PENDUDUK MISKIN DI PROVINSI ACEH TAHUN 2000-2019),” Jurnal Ekonomi Regional Unimal, vol. 5, no. 1, 2022.doi; https://doi.org/10.29103/jeru.v5i1.7916
D. Handayani, A. F. Artari, W. Safitri, W. Rahayu, and V. M. Santi, “COUNT REGRESSION MODELS FOR ANALYZING CRIME RATES IN THE EAST JAVA PROVINCE,” J Phys Conf Ser, vol. 2123, no. 1, p. 012028, Nov. 2021, doi: https://doi.org/10.1088/1742-6596/2123/1/012028.
A. Agresti, AN INTRODUCTION TO CATEGORICAL DATA ANALYSIS, Third. Florida: Wiley Series in Probability and Statistics, 2019.
Y. Tiara, M. N. Aidi, E. Erfiani, and R. Rachmawati, “OVERDISPERSION HANDLING IN POISSON REGRESSION MODEL BY APPLYING NEGATIVE BINOMIAL REGRESSION,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 1, pp. 0417–0426, Apr. 2023, doi: https://doi.org/10.30598/barekengvol17iss1pp0417-0426.
Z. Y. Algamal, R. E. Shamany, and N. N. Alobaidi, “A NEW RIDGE ESTIMATOR FOR THE NEGATIVE BINOMIAL REGRESSION MODEL,” Thailand Statistician, vol. 19, no. 1, pp. 115–124, 2021.
H. Wang, R. Li, and C.-L. Tsai, “TUNING PARAMETER SELECTORS FOR THE SMOOTHLY CLIPPED ABSOLUTE DEVIATION METHOD,” Biometrika, vol. 94, no. 3, pp. 553–568, Aug. 2007, doi: https://doi.org/10.1093/biomet/asm053.
Z. Wang, S. Ma, M. Zappitelli, C. Parikh, C.-Y. Wang, and P. Devarajan, “PENALIZED COUNT DATA REGRESSION WITH APPLICATION TO HOSPITAL STAY AFTER PEDIATRIC CARDIAC SURGERY,” Stat Methods Med Res, vol. 25, no. 6, pp. 2685–2703, Dec. 2016, doi: https://doi.org/10.1177/0962280214530608.
V. M. Santi, K. A. Notodiputro, and B. Sartono, “VARIABLE SELECTION METHODS APPLIED TO THE MATHEMATICS SCORES OF INDONESIAN STUDENTS BASED ON CONVEX PENALIZED LIKELIHOOD,” J Phys Conf Ser, vol. 1402, no. 7, p. 077096, Dec. 2019, doi: ttps://doi.org/10.1088/1742-6596/1402/7/077096.
V. M. Santi, K. A. Notodiputro, B. Sartono, and W. Rahyu, “GENERALIZED LINEAR MIXED MODELS BY PENALIZED LASSO IN MODELLING THE SCORES OF INDONESIAN STUDENTS,” J Phys Conf Ser, vol. 1869, no. 1, p. 012140, Apr. 2021, doi: https://doi.org/10.1088/1742-6596/1869/1/012140.
R. O. Olanrewaju and J. F. Ojo, “NON-CONVEX PENALIZED ESTIMATION OF COUNT DATA RESPONS VIA GENERALIZED LINEAR MODEL,” Asian Journal of Fuzzy and Applied Mathematics, vol. 8, no. 3, 2020.doi: https://doi.org/10.24203/ajfam.v8i3.6443
M. Arayeshgari, L. Tapak, G. Roshanaei, J. Poorolajal, and A. Ghaleiha, “APPLICATION OF GROUP SMOOTHLY CLIPPED ABSOLUTE DEVIATION METHOD IN IDENTIFYING CORRELATES OF PSYCHIATRIC DISTRESS AMONG COLLEGE STUDENTS,” BMC Psychiatry, vol. 20, no. 1, p. 198, 2020, doi: https://doi.org/10.1186/s12888-020-02591-3.
J. Fan and R. Li, “VARIABLE SELECTION VIA NONCONCAVE PENALIZED LIKELIHOOD AND ITS ORACLE PROPERTIES,” J Am Stat Assoc, vol. 96, no. 456, 2001.doi: https://doi.org/10.1198/016214501753382273
A. J. Dobson and A. G. Barnett, AN INTRODUCTION GENERALIZED LINEAR MODELS, 4th ed. US: Taylor & Francis Group, 2018.
A. Agresti, CATEGORICAL DATA ANALYSIS, 2nd ed. Hoboken: John Wiley & Sons, 2002.
J. M. Hilbe, NEGATIVE BINOMIAL REGRESSION, 2nd ed. New York: Cambridge University Press, 2011.
Pemerintah Jawa Barat, KEPUTUSAN GUBERNUR JAWA BARAT. Jawa Barat, 2021.
A. C. Cameron and P. K. Trivedi, REGRESSION ANALYSIS OF COUNT DATA. New York: Cambridge University Press, 1998.
A. J. Izenman, MODERN MULTIVARIATE STATISTICAL TECHNIQUES: REGRESSION, CLASSIFICATION, AND MANIFOLD LEARNING. New York: Springer, 2008.
A. K. Yadav and S. K. Shah, “NEGATIVE BINOMIAL DISTRIBUTION TO EXPLAIN THE DOMESTIC FIRE INCIDENCE IN NEPAL,” Nepalese Journal of Statistics, pp. 51–66, Dec. 2021, doi: https://doi.org/10.3126/njs.v5i1.41229.
J. F. Hair, G. T. M. Hult, C. M. Ringle, M. Sarstedt, N. P. Danks, and S. Ray, PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING (PLS-SEM) USING R. Cham: Springer International Publishing, 2021. doi: https://doi.org/10.1007/978-3-030-80519-7.
H. W. Utami and S. U. Masjkuri, “THE INFLUENCE OF ECONOMIC GROWTH, MINIMUM WAGE, OPEN UNEMPLOYMENT RATE, AND EDUCATION ON THE NUMBER OF POOR POPULATION (PENGARUH PERTUMBUHAN EKONOMI, UPAH MINIMUM, TINGKAT PENGANGGURAN TERBUKA DAN PENDIDIKAN TERHADAP JUMLAH PENDUDUK MISKIN),” Jurnal Ekonomi dan Bisnis Airlangga, vol. 28, no. 2, pp. 105–116, 2018.doi: https://doi.org/10.20473/jeba.V28I22018.105-116
L. Priseptian and W. P. Primandhana, “ANALYSIS OF FACTORS AFFECTING POVERTY IN EAST JAVA (ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KEMISKINAN DI JAWA TIMUR),” Forum Ekonomi UPN , vol. 24, no. 1, pp. 45–53, 2022.doi: https://doi.org/10.30872/jfor.v24i1.10362
S. Sumarsono, EKONOMI MANAJEMEN SUMBER DAYA MANUSIA DAN KETENAGAKERJAAN. Jember: Penerbit Graha Ilmu, 2003.
E. Rusdianti, “POVERTY ALLEVIATION STRATEGIES THROUGH THE ESTABLISHMENT AND DEVELOPMENT OF COOPERATIVES (STRATEGI PENGENTASAN KEMISKINAN MELALUI PROGRAM PENDIRIAN DAN PENGEMBANGAN KOPERASI),” Jurnal Dinamika Sosial Budaya, vol. 21, no. 2, 2019.doi: https://doi.org/10.26623/jdsb.v21i2.1765
M. Kuncoro, DASAR-DASAR EKONOMIKA PEMBANGUNAN. Yogyakarta: UPP STIM YKPN, 2010.
T. Dartanto et al., “DAMPAK PROGRAM JKN-KIS TERHADAP KEMISKINAN,” Jakarta, 2017.
E. M. Johnston, S. McMorrow, T. W. Thomas, and G. M. Kenny, “ACA MEDICAID EXPANSION AND INSURANCE COVERAGE AMONG NEW MOTHERS LIVING IN POVERTY,” Pediatrics, vol. 145, no. 5, 2020.doi: https://doi.org/10.1542/peds.2019-3178
Nurhasanah, M. Syafri, and J. K. Edi, “ANALYSIS OF THE INFLUENCE OF EDUCATION LEVEL AND ECONOMIC GROWTH ON POVERTY RATE IN JAMBI PROVINCE (ANALISIS PENGARUH TINGKAT PENDIDIKAN DAN PERTUMBUHAN EKONOMI TERHADAP TINGKAT KEMISKINAN DI PROVINSI JAMBI),” Jurnal Ekonomi Sumberdaya dan Lingkungan, vol. 8, no. 3, 2019.doi: https://doi.org/10.22437/jels.v8i3.11993
K. P. Doshi, INEQUALITY AND ECONOMIC GROWTH. California: University of San Diego, 2000.
A. Massaid, M. Hanif, D. Febrianti, and N. Chamidah, “MODELLING OF POVERTY PERCENTAGE OF NON-FOOD PER CAPITA EXPENDITURES IN INDONESIA USING LEAST SQUARE SPLINE ESTIMATOR,” IOP Conf Ser Mater Sci Eng, vol. 546, no. 5, p. 052044, Jun. 2019, doi: https://doi.org/10.1088/1757-899X/546/5/052044.
R. Hasanah, Syaparuddin, and Rosmeli, “THE INFLUENCE OF LIFE EXPECTANCY, AVERAGE YEARS OF SCHOOLING, AND PER CAPITA EXPENDITURE ON POVERTY RATES IN REGENCIES/CITIES OF JAMBI PROVINCE (PENGARUH ANGKA HARAPAN HIDUP, RATA-RATA LAMA SEKOLAH, DAN PENGELUARAN PERKAPITA TERHADAP TINGKAT KEMISKINAN PADA KABUPATEN/KOTA DI PROVINSI JAMBI),” Jurnal Perspektif Ekonomi dan Pembangunan Daerah, vol. 10, no. 3, 2021.doi: https://doi.org/10.22437/pdpd.v10i3.16253
Copyright (c) 2025 Vera Maya Santi, Aulia Baihaqi, Dania Siregar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.