CLUSTERING WITH SKATER METHODS AND UTILIZATION OF LISA ON UNEMPLOYMENT RATE

  • Naufal Shela Abdila Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Indonesia https://orcid.org/0009-0007-8196-4643
  • Rahma Fitriani Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Indonesia https://orcid.org/0000-0002-6478-7661
  • Muhamad Liswansyah Pratama Department of Data Sciences, Faculty of Computer Sciences, UPN "VETERAN" Jawa Timur, Indonesia https://orcid.org/0000-0003-4749-1823
Keywords: LISA, SKATER, Unemployment Rate

Abstract

Spatial cluster analysis is an analysis used to identify a spatial pattern or geographical grouping of data. One method that can be used in spatial cluster analysis is Spatial Cluster Analysis by Tree Edge Removal (SKATER). This research aims to analyze the spatial pattern of the Unemployment Rate in East Java by utilizing the SKATER method. The clustering results are then used to create a weighting matrix, which is used to find local spatial autocorrelation values ​​using the Local Indicators of Spatial Association (LISA) index. The data is taken from BPS East Java with variables including unemployment rate, education level, minimum wage, Human Development Index, and population density. The results show that this approach is able to identify significant local spatial patterns. However, the selection of the number of clusters and input variables proved to be very influential on the results, so care needs to be taken.

Downloads

Download data is not yet available.

References

M. N. Saputri, S. Sifriyani, and W. Wasono, “APPLICATION OF NONPARAMETRIC GEOGRAPHICALLY WEIGHTED REGRESSION METHOD ON OPEN UNEMPLOYMENT RATE DATA IN INDONESIA,” BAREKENG: Journal of Mathematics and Its Applications, vol. 17, no. 4, pp. 2071–2080, Dec. 2023, doi: https://doi.org/10.30598/barekengvol17iss4pp2071-2080.

Rusman, “DAMPAK PANDEMI COVID-19 TERHADAP ANGKA PENGANGGURAN DI INDONESIA,” in Proceeding Seminar Nasional & Call For Papers, 2021, pp. 687–693.doi: https://doi.org/10.34123/semnasoffstat.v2021i1.911

Muaidy Yasin, Muhammad Irwan, and Wahyunadi, “ANALISIS PERTUMBUHAN EKONOMI, PENGANGGURAN DAN KEMISKINAN DI KABUPATEN LOMBOK TENGAH,” Ekonobis, vol. 6, no. 2, pp. 134–164, Sep. 2020.doi: https://doi.org/10.29303/ekonobis.v6i2.52

A. R. D. Prayitno and D. Kusumawardani, “OPEN UNEMPLOYMENT RATE IN THE PROVINCE OF EAST JAVA,” The Winners, vol. 23, no. 1, pp. 11–18, Jan. 2022, doi: https://doi.org/10.21512/tw.v23i1.7047.

Badan Pusat Statistik, “TINGKAT PENGAGGURAN TERBUKA MENURUT PROVINSI (PERSEN), 2023,” Badan Pusat Statistik. Accessed: Oct. 26, 2024. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/NTQzIzI=/tingkat-pengangguran-terbuka--februari-2024.html

O. Siahaan, R. B. S. Pardede, R. Rahim, and D. Desmawan, “ANALISIS PENGARUH INDEKS PEMBANGUNAN MANUSIA DAN PENDIDIKAN TERHADAP TINGKAT PENGANGGURAN TERBUKA DI PROVINSI SUMATERA UTARA,” JETISH: Journal of Education Technology Information Social Sciences and Health, vol. 1, no. 1, pp. 55–63, 2022, [Online]. Available: https://data.tempo.co/data/887/tingkat-pengangguran-terbuka-berdasarkan-pendidikan-tertinggi-

U. N. Faizah and N. Woyanti, “ANALISIS PENGARUH PENDIDIKAN, PARTISIPASI KERJA, DAN UPAH MINIMUM TERHADAP PENGANGGURAN DI PROVINSI BANTEN TAHUN 2011-2020,” BISECER (Business Economic Entrepreneurship), vol. 6, no. 1, pp. 48–61, Jan. 2023.doi: https://doi.org/10.61689/bisecer.v6i1.386

Nurlaily, L. Aridinanti, and Z. Wildani, “PEMODELAN TINGKAT PENGANGGURAN TERBUKA DI PROVINSI JAMBI MENGGUNAKAN REGRESI DATA PANEL,” Jurnal Sains dan Seni ITS , vol. 11, no. 1, pp. 157–162, 2022.doi: https://doi.org/10.12962/j23373520.v11i1.69229

L. Anselin, “SPATIAL MODELS IN ECONOMETRIC RESEARCH,” 2021 doi: https://doi.org/10.1093/acrefore/9780190625979.013.643.

J. F. Wang, T. L. Zhang, and B. J. Fu, “A MEASURE OF SPATIAL STRATIFIED HETEROGENEITY,” Ecol Indic, vol. 67, pp. 250–256, Aug. 2016, doi: https://doi.org/10.1016/j.ecolind.2016.02.052.

K. Kopczewska, “SPATIAL MACHINE LEARNING: NEW OPPORTUNITIES FOR REGIONAL SCIENCE,” Ann Reg Sci, vol. 68, no. 3, pp. 713–755, Jun. 2022, doi: https://doi.org/10.1007/s00168-021-01101-x.

N. Amoroso et al., “PSI SPATIALLY CONSTRAINED CLUSTERING: THE SIBARI AND METAPONTO COASTAL PLAINS,” Remote Sens (Basel), vol. 15, no. 10, May 2023, doi: https://doi.org/10.3390/rs15102560.

I. M. Pratiwi, Marseto, and Sishadiyati, “ANALISIS PENGARUH JUMLAH PENDUDUK, INDEKS PEMBANGUNAN MANUSIA DAN UPAH MINIMUM TERHADAP PENGANGGURAN DI KABUPATEN BANGKALAN,” Jurnal Syntax Transformation, vol. 2, no. 6, pp. 787–796, 2021.doi: https://doi.org/10.46799/jst.v2i6.300

D. Wulandari and N. Woyanti, “PENGARUH PENDIDIKAN, UPAH MINIMUM, DAN KESEMPATAN KERJA SEKTOR FORMAL TERHADAP PENGANGGURAN TERDIDIK DI PROVINSI JAWA BARAT (2017-2021),” BISECER (Business Economic Entrepreneurship), vol. VI, no. 2, pp. 90–104, Jul. 2023.doi: https://doi.org/10.61689/bisecer.v6i2.434

N. Ismayani and L. Mariana Hura, “ANALISIS KEPADATAN PENDUDUK TERHADAP TINGKAT PENGANGGURAN SEBELUM DAN DI SAAT (COVID-19) DI KOTA PADANG,” Jurnal Azimut, vol. 4, no. 1, pp. 39–50, Jun. 2022, [Online]. Available: https://ojs.unitas-pdg.ac.id/index.php/azimut

Y. Chen, “RECONSTRUCTION AND NORMALIZATION OF LISA FOR SPATIAL ANALYSIS,” PLoS One, vol. 19, no. 5 May, pp. 1–26, May 2024, doi: https://doi.org/10.1371/journal.pone.0303456.

L. V Pinto, C. S. S. Ferreira, and Pereira P, “USING LOCAL INDICATORS OF SPATIAL ASSOCIATION (LISA) TO ASSESS SPATIAL RELATION BETWEEN URBAN PARKS’ STRUCTURE AND USERS’ ACTIVITIES IN VILNIUS (LITHUANIA),” in XVI International Scientific Conference “Monitoring of Geological Processes and Ecological Condition of the Environment,” Kyiv, Ukraine, Nov. 2022, pp. 1–5. doi: https://doi.org/10.3997/2214-4609.2022580180

P. Kowe, O. Mutanga, J. Odindi, and T. Dube, “EXPLORING THE SPATIAL PATTERNS OF VEGETATION FRAGMENTATION SSING LOCAL SPATIAL AUTOCORRELATION INDICES,” J Appl Remote Sens, vol. 13, no. 02, pp. 1–14, Jun. 2019, doi: https://doi.org/10.1117/1.JRS.13.024523.

N. M. Huda, F. Fran, Y. Yundari, L. Fikadila, and F. Safitri, “MODIFIED WEIGHT MATRIX USING PRIM’S ALGORITHM IN MINIMUM SPANNING TREE (MST) APPROACH FOR GSTAR(1;1) MODEL,” BAREKENG: Journal of Mathematics and Its Applications, vol. 17, no. 1, pp. 0263–0274, Apr. 2023, doi: https://doi.org/10.30598/barekengvol17iss1pp0263-0274.

I. Dokmanic, R. Parhizkar, J. Ranieri, and M. Vetterli, “EUCLIDEAN DISTANCE MATRICES: ESSENTIAL THEORY, ALGORITHMS, AND APPLICATIONS,” IEEE Signal Process Mag, vol. 32, no. 6, pp. 12–30, Nov. 2015, doi: https://doi.org/10.1109/MSP.2015.2398954.

L. Anselin, “LOCAL INDICATORS OF SPATIAL ASSOCIATION-LISA,” Geographically Analysis, vol. 27, no. 2, pp. 93–115, Apr. 1995.doi: https://doi.org/10.1111/j.1538-4632.1995.tb00338.x

L. Anselin, THE MORAN SCATTERPLOT AS AN ESDA TOOL TO ASSESS LOCAL INSTABILITY IN SPATIAL ASSOCIATION. 1996.

R. Guillain and J. Le Gallo, “AGGLOMERATION AND DISPERSION OF ECONOMIC ACTIVITIES IN AND AROUND PARIS: AN EXPLORATORY SPATIAL DATA ANALYSIS,” Environ Plann B Plann Des, vol. 37, no. 6, pp. 961–981, Jan. 2010, doi: https://doi.org/10.1068/b35038.

A. S. Jaber, A. K. Hussein, N. A. Kadhim, and A. A. Bojassim, “A MORAN’S I AUTOCORRELATION AND SPATIAL CLUSTER ANALYSIS FOR IDENTIFYING CORONAVIRUS DISEASE COVID-19 IN IRAQ USING GIS APPROACH,” Caspian Journal of Environmental Sciences, vol. 20, no. 1, pp. 55–60, Jan. 2022, doi: https://doi.org/10.22124/CJES.2022.5392.

E. Orozco-Acosta, A. Adin, and M. D. Ugarte, “Scalable Bayesian modeling for smoothing disease risks in large spatial data sets using INLA,” Spatial Statistics, vol. 41, p. 100496, 2021.

E. Orozco-Acosta, A. Adin, and M. D. Ugarte, “Big problems in spatio-temporal disease mapping: methods and software,” Computer Methods and Programs in Biomedicine, vol. 231, p. 107403, 2023.

G. Vicente, A. Adin, T. Goicoa, and M. D. Ugarte, “High-dimensional order-free multivariate spatial disease mapping,” Statistics and Computing, vol. 33, p. 104, 2023.

Published
2025-09-01
How to Cite
[1]
N. S. Abdila, R. Fitriani, and M. L. Pratama, “CLUSTERING WITH SKATER METHODS AND UTILIZATION OF LISA ON UNEMPLOYMENT RATE”, BAREKENG: J. Math. & App., vol. 19, no. 4, pp. 2633-2646, Sep. 2025.