THE GENERALIZED SPACE-TIME ARIMA (GSTARIMA) MODEL FOR PREDICTING NITROGEN MONOXIDE TO MITIGATE EID AL- FITR AIR POLLUTION IN SURABAYA

Keywords: Air Quality, ARIMA, GSTARIMA, Inverted distance, Mitigation, Nitrogen monoxide, Prediction, RMSE, sMAPE

Abstract

Air quality is a crucial factor due to its significant impact on environmental sustainability and public health. One of the major pollutants affecting air quality is Nitrogen Monoxide (NO), especially during periods of increased human mobility such as Eid al-Fitr. Monitoring and predicting NO levels are essential for early mitigation efforts. This study aims to evaluate the performance of the Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) model with three types of spatial weighting schemes and compare it with other forecasting methods, namely ARIMA, VARIMA, and Support Vector Regression (SVR), in predicting NO concentrations in Surabaya for April 2024. The data used in this study consist of daily NO concentration measurements obtained from the Surabaya City Environment Agency’s monitoring stations located at SPKU Tandes, SPKU Wonorejo, and SPKU Kebonsari, covering the period from January 2023 to March 2024. The GSTARIMA model was selected for its capability to capture both spatial and temporal dependencies across monitoring locations. As an extension of the ARIMA model, GSTARIMA incorporates spatial weight matrices to model spatial heterogeneity. Parameter estimation was conducted using the Ordinary Least Squares (OLS) method. The results indicate that the GSTARIMA model with Inverse Distance Weighting (IDW) and order (3,1,0)₁ in the first spatial order yields the most accurate predictions, outperforming ARIMA, VARIMA, and SVR models. The model produced the lowest Symmetric Mean Absolute Percentage Error (sMAPE) of 0.93% and Root Mean Square Error (RMSE) of 5.32. A notable spike in NO concentrations was observed between April 23 and 25, 2024, coinciding with the post-Eid al-Fitr return flow, indicating a surge in population mobility.

 

Downloads

Download data is not yet available.

References

BPS Kota Surabaya, KOTA SURABAYA DALAM ANGKA 2023. Surabaya: BPS Kota Surabaya, 2023. [Online]. Available: Https://Surabayakota.Bps.Go.Id/

R. Kurniawan Et Al., “IMPACTS OF INDUSTRIAL PRODUCTION AND AIR QUALITY BY REMOTE SENSING ON NITROGEN DIOXIDE CONCENTRATION AND RELATED EFFECTS: AN ECONOMETRIC APPROACH”, Environmental Pollution, Vol. 334, P. 122212, Oct. 2023, Doi: https://doi.org/10.1016/j.envpol.2023.122212.

T. Nakyai, M. Santasnachok, A. Thetkathuek, And N. Phatrabuddha, “INFLUENCE OF METEOROLOGICAL FACTORS ON AIR POLLUTION AND HEALTH RISKS: A COMPARATIVE ANALYSIS OF INDUSTRIAL AND URBAN AREAS IN CHONBURI PROVINCE, THAILAND”, Environmental Advances, Vol. 19, P. 100608, Apr. 2025, Doi: https://doi.org/10.1016/j.envadv.2024.1006088.

R. Zhao, X. Huang, J. Xue, And X. Guan, “A PRACTICAL SIMULATION OF CARBON SINK CALCULATION FOR URBAN BUILDINGS: A CASE STUDY OF ZHENGZHOU IN CHINA”, Sustainable Cities And Society, Vol. 99, P. 104980, Dec. 2023, Doi: https://doi.org/10.1016/j.scs.2023.104980.

S. Mukherjee, G. Kalra, And S. C. Bhatla, “ATMOSPHERIC NITROGEN OXIDES (NOX), HYDROGEN SULPHIDE (H2S) AND CARBON MONOXIDE (CO): BOON OR BANE FOR PLANT METABOLISM AND DEVELOPMENT?”, Environmental Pollution, P. 125676, Jan. 2025, Doi: https://doi.org/10.1016/j.envpol.2025.125676.

D. Z. L. Benjamin And B. Dieudonné, “A REVIEW OF THE EFFECTS OF CLIMATE CHANGE ON HYDROPOWER DAMS IN CAMEROON”, Journal Of Environmental & Earth Sciences, Vol. 6, No. 3, Art. No. 3, Sep. 2024, Doi: https://doi.org/10.30564/jees.v6i3.6735.

M. Dai, B. Gu, X. Ma, And T. Chun, “NITROGEN MONOXIDE REDUCTION BY CARBON MONOXIDE TO COMBUSTION CONTROL WITH CALCIUM FERRITE REDOX IN IRON ORE SINTERING”, Fuel, Vol. 337, P. 127172, Apr. 2023, Doi: https://doi.org/10.1016/j.fuel.2022.127172.

S. Srivastava, S. Behera, And D. Mitra, “DISTRIBUTION OF OZONE, CARBON MONOXIDE AND OXIDES OF NITROGEN OVER AN URBAN LOCATION IN THE FOOTHILLS OF THE NORTH-WESTERN HIMALAYAS”, Urban Climate, Vol. 55, P. 101913, May 2024, Doi: https://doi.org/10.1016/j.uclim.2024.101913.

D. Cubides, X. Guimerà, I. Jubany, And X. Gamisans, “A REVIEW: BIOLOGICAL TECHNOLOGIES FOR NITROGEN MONOXIDE ABATEMENt”, Chemosphere, Vol. 311, P. 137147, Jan. 2023, Doi: https://doi.org/10.1016/j.chemosphere.2022.137147.

A. D. Sakti Et Al., “MULTI-AIR POLLUTION RISK ASSESSMENT IN SOUTHEAST ASIA REGION USING INTEGRATED REMOTE SENSING AND SOCIO-ECONOMIC DATA PRODUCTS”, Science Of The Total Environment, Vol. 854, P. 158825, Jan. 2023, Doi: https://doi.org/10.1016/j.scitotenv.2022.158825.

S. A. Meo, M. A. Salih, J. M. Alkhalifah, A. H. Alsomali, And A. A. Almushawah, “ENVIRONMENTAL POLLUTANTS PARTICULATE MATTER (PM2.5, PM10), CARBON MONOXIDE (CO), NITROGEN DIOXIDE (NO2), SULFUR DIOXIDE (SO2), AND OZONE (O3) IMPACT ON LUNG FUNCTIONS”, Journal Of King Saud University - Science, Vol. 36, No. 7, P. 103280, Aug. 2024, Doi: https://doi.org/10.1016/j.jksus.2024.103280.

T. Salthammer, “CARBON MONOXIDE AS AN INDICATOR OF INDOOR AIR QUALITY”, Environmental Science: Atmospheres, Vol. 4, No. 3, Pp. 291–305, Mar. 2024, Doi: https://doi.org/10.1039/D4EA00006D.

M. N. A. Ramadan, M. A. H. Ali, S. Y. Khoo, M. Alkhedher, And M. Alherbawi, “REAL-TIME IOT-POWERED AI SYSTEM FOR MONITORING AND FORECASTING OF AIR POLLUTION IN INDUSTRIAL ENVIRONMENT”, Ecotoxicology And Environmental Safety, Vol. 283, P. 116856, Sep. 2024, Doi: https://doi.org/10.1016/j.ecoenv.2024.116856.

P. S. Thorat Et Al., “ON THE TIME SERIES ANALYSIS OF RESISTIVE SWITCHING DEVICES”, Microelectronic Engineering, Vol. 297, P. 112306, Mar. 2025, Doi: https://doi.org/10.1016/j.mee.2024.112306.

Z. Shu And P. W. Chan, “APPLICATION OF FRACTAL ANALYSIS ON WIND SPEED TIME SERIES: A REVIEW”, Advances In Wind Engineering, P. 100028, Jan. 2025, Doi: https://doi.org/10.1016/j.awe.2024.100028.

F. A. Chyon, Md. N. H. Suman, Md. R. I. Fahim, And Md. S. Ahmmed, “TIME SERIES ANALYSIS AND PREDICTING COVID-19 AFFECTED PATIENTS BY ARIMA MODEL USING MACHINE LEARNING”, Journal Of Virological Methods, Vol. 301, P. 114433, Mar. 2022, Doi: https://doi.org/10.1016/j.jviromet.2021.114433.

K. G. Ranjan, B. R. Prusty, And D. Jena, “REVIEW OF PREPROCESSING METHODS FOR UNIVARIATE VOLATILE TIME-SERIES IN POWER SYSTEM APPLICATIONS”, Electric Power Systems Research, Vol. 191, P. 106885, Feb. 2021, Doi: https://doi.org/10.1016/j.epsr.2020.106885.

A. Al-Lami And Á. Török, “REGIONAL FORECASTING OF DRIVING FORCES OF CO2 EMISSIONS OF TRANSPORTATION IN CENTRAL EUROPE: AN ARIMA-BASED APPROACH”, Energy Reports, Vol. 13, Pp. 1215–1224, Jun. 2025, Doi: https://doi.org/10.1016/j.egyr.2025.01.004.

M. S. K. Abhilash, A. Thakur, D. Gupta, And B. Sreevidya, “TIME SERIES ANALYSIS OF AIR POLLUTION IN BENGALURU USING ARIMA MODEL”, In Ambient Communications And Computer Systems, G. M. Perez, S. Tiwari, M. C. Trivedi, And K. K. Mishra, Eds., Singapore: Springer, 2018, Pp. 413–426. Doi: https://doi.org/10.1007/978-981-10-7386-1_36.

P. J. García Nieto, F. Sánchez Lasheras, E. García-Gonzalo, And F. J. De Cos Juez, “PM10 CONCENTRATION FORECASTING IN THE METROPOLITAN AREA OF OVIEDO (NORTHERN SPAIN) USING MODELS BASED ON SVM, MLP, VARMA AND ARIMA: A CASE STUDY”, Science Of The Total Environment, Vol. 621, Pp. 753–761, Apr. 2018, Doi: https://doi.org/10.1016/j.scitotenv.2017.11.291.

J. Bernacki, “FORECASTING THE AIR POLLUTION CONCENTRATION WITH NEURAL NETWORKS”, Urban Climate, Vol. 59, P. 102262, Feb. 2025, Doi: https://doi.org/10.1016/j.uclim.2024.102262.

J. Liu Et Al., “MACHINE LEARNING FOR FORECASTING FACTORY CONCENTRATIONS OF NITROGEN OXIDES FROM UNIVARIATE DATA EXPLOITING TREND ATTRIBUTES”, International Journal Of Advanced Nuclear Reactor Design And Technology, Vol. 6, No. 2, Pp. 117–122, Jun. 2024, Doi: https://doi.org/10.1016/j.jandt.2024.12.002.

Dinas Lingkungan Hidup Surabaya, “PEMKOT SURABAYA PANTAU KUALITAS UDARA DENGAN INDEKS PENCEMARAN UDARA MENGGUNAKAN 5 PARAMETER”. [Online]. Available: Https://Www.Surabaya.Go.Id/

S. Ajobo, O. O. Alaba, And A. Zaenal, “GENERALISED SPACE-TIME SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE SEEMINGLY UNRELATED REGRESSION MODELLING OF SEASONAL AND NON-STATIONARY DATA”, Scientific African, Vol. 24, P. E02189, Jun. 2024, Doi: https://doi.org/10.1016/j.sciaf.2024.e02189.

M. Akbar, B. Ruchjana, D. Prastyo, A. Muhaimin, And E. Setyowati, “A GENERALIZED SPACE-TIME AUTOREGRESSIVE MOVING AVERAGE (GSTARMA) MODEL FOR FORECASTING AIR POLLUTANT IN SURABAYA”, Presented At The Journal Of Physics: Conference Series, IOP Publishing, 2020, P. 012022.doi: https://doi.org/10.1088/1742-6596/1490/1/012022

J. Hu, S. Wang, And J. Mao, “SHORT TIME PM2.5 PREDICTION MODEL FOR BEIJING-TIANJIN-HEBEI REGION BASED ON GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR)”, IOP Conf. Ser.: Earth Environ. Sci., Vol. 358, No. 2, P. 022075, Dec. 2019, Doi: https://doi.org/10.1088/1755-1315/358/2/022075.

N. M. Mohamed, N. H. A. Rahman, And H. S. Zulkafli, “GENERALIZED SPACE-TIME AUTOREGRESSIVE (GSTAR) FOR FORECASTING AIR POLLUTANT INDEX IN SELANGOR”, Journal Of Quality Measurement And Analysis, Vol. 19, No. 3, Pp. 143–153, 2023.

Jamilatuzzahro, R. E. Caraka, R. Herliansyah, A. S., D. M. Sari, And B. Pardamean, “GENERALIZED SPACE TIME AUTOREGRESSIVE OF CHILI PRICES”, In 2018 International Conference On Information Management And Technology (Icimtech), Sep. 2018, Pp. 291–296. Doi: https://doi.org/10.1109/ICIMTech.2018.8528117.

N. Imro”ah, “DETERMINATION OF THE BEST WEIGHT MATRIX FOR THE GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) MODEL IN THE COVID-19 CASE ON JAVA ISLAND, INDONESIA”, Spatial Statistics, Vol. 54, P. 100734, 2023.doi: https://doi.org/10.1016/j.spasta.2023.100734

A. Safira, R. A. Dhiya”ulhaq, I. Fahmiyah, And M. Ghani, “SPATIAL IMPACT ON INFLATION OF JAVA ISLAND PREDICTION USING AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) AND GENERALIZED SPACE-TIME ARIMA (GSTARIMA)”, Methodsx, Vol. 13, P. 102867, Dec. 2024, Doi: https://doi.org/10.1016/j.mex.2024.102867.

W. W. S. Wei, TIME SERIES ANALYSIS UNIVARIATE AND MULTIVARIATE METHODS, Second Edition. Boston San Francisco , New York: Pearson, Addison Wesley, 2006.

A. Ashari, A. Efendi, And H. Pramoedyo, “GSTARX-SUR MODELING USING INVERSE DISTANCE WEIGHTED MATRIX AND QUEEN CONTIGUITY WEIGHTED MATRIX FOR FORECASTING COCOA BLACK POD ATTACK IN TRENGGALEK REGENCY”, Presented At The IISS 2019: Proceedings Of The 13th International Interdisciplinary Studies Seminar, IISS 2019, 30-31 October 2019, Malang, Indonesia, European Alliance For Innovation, 2020, P. 50.doi: https://doi.org/10.4108/eai.23-10-2019.2293086

N. Ilmi, A. Aswi, And M. K. Aidid, “GENERALIZED SPACE-TIME AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (GSTARIMA) DALAM PERAMALAN DATA CURAH HUJAN DI KOTA MAKASSAR”, Inferensi, Vol. 6, No. 1, Pp. 25–43, 2023.doi: https://doi.org/10.12962/j27213862.v6i1.14347

W. W. S. Wei, MULTIVARIATE TIME SERIES ANALYSIS AND APPLICATIONS. In Wiley Series In Probability And Statistics. New Jersey: John Wiley & Sons Ltd, 2019.

M. Li And Y. Zhang, “BOOTSTRAPPING MULTIVARIATE PORTMANTEAU TESTS FOR VECTOR AUTOREGRESSIVE MODELS WITH WEAK ASSUMPTIONS ON ERRORS”, Computational Statistics & Data Analysis, Vol. 165, P. 107321, Jan. 2022, Doi: https://doi.org/10.1016/j.csda.2021.1073211.

M. Hallin And H. Liu, “CENTER-OUTWARD RANK- AND SIGN-BASED VARMA PORTMANTEAU TESTS: CHITTURI, HOSKING, AND LI–MCLEOD REVISITED”, Econometrics And Statistics, Feb. 2023, Doi: https://doi.org/10.1016/j.ecosta.2023.01.006.

Š. Hudecová And M. Šiman, “STOCHASTIC HYPERPLANE-BASED RANKS AND THEIR USE IN MULTIVARIATE PORTMANTEAU TESTS”, Journal Of Multivariate Analysis, P. 105344, Jun. 2024, Doi: https://doi.org/10.1016/j.jmva.2024.105344.

U. S. Pasaribu, U. Mukhaiyar, N. M. Huda, K. N. Sari, And S. W. Indratno, “MODELLING COVID-19 GROWTH CASES OF PROVINCES IN JAVA ISLAND BY MODIFIED SPATIAL WEIGHT MATRIX GSTAR THROUGH RAILROAD PASSENGER”S MOBILITY”, Heliyon, Vol. 7, No. 2, P. E06025, Feb. 2021, Doi: https://doi.org/10.1016/j.heliyon.2021.e06025.

Sifriyani, I. N. Budiantara, M. F. F. Mardianto, And Asnita, “DETERMINATION OF THE BEST GEOGRAPHIC WEIGHTED FUNCTION AND ESTIMATION OF SPATIO TEMPORAL MODEL – GEOGRAPHICALLY WEIGHTED PANEL REGRESSION USING WEIGHTED LEAST SQUARE”, Methodsx, Vol. 12, P. 102605, Jun. 2024, Doi: https://doi.org/10.1016/j.mex.2024.102605.

A. J. Hama Rash, L. Khodakarami, D. A. Muhedin, M. I. Hamakareem, And H. F. H. Ali, “SPATIAL MODELING OF GEOTECHNICAL SOIL PARAMETERS: INTEGRATING GROUND-BASED DATA, RS TECHNIQUE, SPATIAL STATISTICS AND GWR MODEL”, Journal Of Engineering Research, Vol. 12, No. 1, Pp. 75–85, Mar. 2024, Doi: https://doi.org/10.1016/j.jer.2023.10.026.

W. Yang, S. N. Sparrow, And D. C. H. Wallom, “A COMPARATIVE CLIMATE-RESILIENT ENERGY DESIGN: WILDFIRE RESILIENT LOAD FORECASTING MODEL USING MULTI-FACTOR DEEP LEARNING METHODS”, Applied Energy, Vol. 368, P. 123365, Aug. 2024, Doi: https://doi.org/10.1016/j.apenergy.2024.123365.

L. C. Velasco, A. J. Estose, M. Opon, E. Tabanao, And F. Apdian, “PERFORMANCE EVALUATION OF SUPPORT VECTOR REGRESSION MACHINE MODELS IN WATER LEVEL FORECASTING”, Procedia Computer Science, Vol. 234, Pp. 436–447, Jan. 2024, Doi: https://doi.org/10.1016/j.procs.2024.03.025.

C. García-Aroca, M. Asunción Martínez-Mayoral, J. Morales-Socuéllamos, And J. V. Segura-Heras, “AN ALGORITHM FOR AUTOMATIC SELECTION AND COMBINATION OF FORECAST MODELS”, Expert Systems With Applications, Vol. 237, P. 121636, Mar. 2024, Doi: https://doi.org/10.1016/j.eswa.2023.121636.

M. Effendi, D. D. Prastyo, And M. S. Akbar, “MODELING AND FORECASTING RETURN VOLATILITIES OF INTER-CAPITAL MARKET INDICES USING GARCH-FRACTIONAL COINTEGRATION MODEL VARIATION”, Procedia Computer Science, Vol. 234, Pp. 389–396, Jan. 2024, Doi: https://doi.org/10.1016/j.procs.2024.03.0199.

C. Wang, F. Xie, J. Yan, And Y. Xia, “A U-MIDAS MODELING FRAMEWORK FOR FORECASTING CARBON DIOXIDE EMISSIONS BASED ON LSTM NETWORK AND LASSO REGRESSION”, Energy Reports, Vol. 13, Pp. 16–26, Jun. 2025, Doi: https://doi.org/10.1016/j.egyr.2024.11.069.

F. Yanuar Et Al., “BAYESIAN ESTIMATION UNDER DIFFERENT LOSS FUNCTIONS FOR THE CASE OF INVERSE RAYLEIGH DISTRIBUTION”, Kuwait Journal Of Science, Vol. 52, No. 1, P. 100343, Jan. 2025, Doi: https://doi.org/10.1016/j.kjs.2024.100343.

H. Rahadian, S. Bandong, A. Widyotriatmo, And E. Joelianto, “IMAGE ENCODING SELECTION BASED ON PEARSON CORRELATION COEFFICIENT FOR TIME SERIES ANOMALY DETECTION”, Alexandria Engineering Journal, Vol. 82, Pp. 304–322, Nov. 2023, Doi: https://doi.org/10.1016/j.aej.2023.09.070.

S. M. Yuni, T. M. Saputra, And N. N. Fadhilah, “THE IMPLEMENTATION OF GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) METHOD ON OPEN UNEMPLOYMENT RATE IN REGENCY/CITY OF SUMATRA ISLAND”, BAREKENG: Jurnal Ilmu Matematika Dan Terapan, Vol. 19, No. 1, Art. No. 1, Jan. 2025, Doi: https://doi.org/10.30598/barekengvol19iss1pp73-86.

Y. Farida, M. Farmita, P. K. Intan, H. Khaulasari, And A. T. Wibowo, “MODELING CRIME IN EAST JAVA USING SPATIAL DURBIN MODEL REGRESSION”, BAREKENG: Jurnal Ilmu Matematika Dan Terapan, Vol. 18, No. 3, Art. No. 3, Jul. 2024, Doi: https://doi.org/10.30598/barekengvol18iss3pp1497-15088.

F. Tolesh And S. Biloshchytska, “FORECASTING INTERNATIONAL MIGRATION IN KAZAKHSTAN USING ARIMA MODELS”, Procedia Computer Science, Vol. 231, Pp. 176–183, Jan. 2024, Doi: https://doi.org/10.1016/j.procs.2023.12.190.

O. M. De Barros, C. L. Marte, C. A. Isler, L. R. Yoshioka, And E. S. Da Fonseca Junior, “SPATIAL MATRICES FOR SHORT-TERM TRAFFIC FORECASTING BASED ON TIME SERIES”, Latin American Transport Studies, Vol. 1, P. 100007, Dec. 2023, Doi: https://doi.org/10.1016/j.latran.2023.100007.

A. Zaki, L. Shafruddin, And I. Thaha, “APPLICATION OF THE GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) METHOD IN FORECASTING THE CONSUMER PRICE INDEX IN FIVE CITIES OF SOUTH SULAWESI PROVINCE”, BAREKENG: Jurnal Ilmu Matematika Dan Terapan, Vol. 19, No. 1, Art. No. 1, Jan. 2025, Doi: https://doi.org/10.30598/barekengvol19iss1pp375-384.

H. M. Nasution And H. Cipta, “ANALISIS SPASIAL DAN TEMPORAL DATA KEJADIAN BENCANA BANJIR DENGAN MODEL GENERALIZED SPACE-TIME AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (GSTARIMA) | JURNAL ABSIS: JURNAL PENDIDIKAN MATEMATIKA DAN MATEMATIKA”, Jurnal ABSIS, Vol. 6, No. 1, Pp. 810–825, 2023.doi: https://doi.org/10.30606/absis.v6i1.2171

R. N. E. Pratiwi, S. Wahyuningsih, And M. Siringoringo, “MODEL GENERALIZED SPACE TIME AUTOREGRESSIVE INTEGRATED MOVING AVERAGE”, EKSPONENSIAL, Vol. 10, No. 2, Art. No. 2, Feb. 2020.

N. M. Huda And N. Imro”ah, “DETERMINATION OF THE BEST WEIGHT MATRIX FOR THE GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) MODEL IN THE COVID-19 CASE ON JAVA ISLAND, INDONESIA”, Spatial Statistics, Vol. 54, P. 100734, Apr. 2023, Doi: https://doi.org/10.1016/j.spasta.2023.100734.

I. Iľko, V. Peterkova, J. Maniak, And D. Štefánik, “THE IMPACT OF THE NEW YEAR CELEBRATION ON THE AIR-POLLUTION IN SLOVAKIA”, Journal Of Environmental & Earth Sciences, Vol. 6, No. 3, Art. No. 3, Sep. 2024, Doi: https://doi.org/10.30564/jees.v6i3.7091.

P. Monika, B. N. Ruchjana, And A. S. Abdullah, “GSTARI-X-ARCH MODEL WITH DATA MINING APPROACH FOR FORECASTING CLIMATE IN WEST JAVA”, Computation, Vol. 10, No. 12, Art. No. 12, Dec. 2022, Doi: https://doi.org/10.3390/computation10120204.

M. Akbar, B. Ruchjana, And M. Riyadi, “GSTAR-SUR MODELING WITH CALENDAR VARIATIONS AND INTERVENTION TO FORECAST OUTFLOW OF CURRENCIES IN JAVA INDONESIA”, Presented At The Journal Of Physics: Conference Series, IOP Publishing, 2018, P. 012060.doi: https://doi.org/10.1088/1742-6596/974/1/012060

N. M. Huda, U. Mukhaiyar, And N. Imro”ah, “AN ITERATIVE PROCEDURE FOR OUTLIER DETECTION IN GSTAR(1;1) MODEL”, BAREKENG: Jurnal Ilmu Matematika Dan Terapan, Vol. 16, No. 3, Art. No. 3, Sep. 2022, Doi: https://doi.org/10.30598/barekengvol16iss3pp975-984.

P. R. Arum, A. R. Indriani, And M. A. Haris, “FORECASTING THE CONSUMER PRICE INDEX WITH GENERALIZED SPACE-TIME AUTOREGRESSIVE SEEMINGLY UNRELATED REGRESSION (GSTAR-SUR): COMPROMISE REGION AND TIME”, BAREKENG: Jurnal Ilmu Matematika Dan Terapan, Vol. 17, No. 2, Art. No. 2, Jun. 2023, Doi: https://doi.org/10.30598/barekengvol17iss2pp1183-1192.

Published
2025-11-24
How to Cite
[1]
H. Khaulasari, D. C. Rini Novitasari, M. Setyawati, J. Maulana, and S. S. Mohd Fauzi, “THE GENERALIZED SPACE-TIME ARIMA (GSTARIMA) MODEL FOR PREDICTING NITROGEN MONOXIDE TO MITIGATE EID AL- FITR AIR POLLUTION IN SURABAYA”, BAREKENG: J. Math. & App., vol. 20, no. 1, pp. 0069-0086, Nov. 2025.