NUMERICAL ANALYSIS OF BLOOD VESSEL CONSTRICTION DUE TO ATHEROSCLEROSIS DISEASE USING FINITE VOLUME METHOD

  • Arif Fatahillah Mathematics Education Study Program, Faculty of Teacher Training and Education, Universitas Jember, Indonesia https://orcid.org/0000-0002-3907-239X
  • Umi Mubarokah Mathematics Education Study Program, Faculty of Teacher Training and Education, Universitas Jember, Indonesia https://orcid.org/0009-0003-9499-1369
  • Rafiantika Megahnia Prihandini Mathematics Education Study Program, Faculty of Teacher Training and Education, Universitas Jember, Indonesia https://orcid.org/0000-0002-6611-6458
  • Edy Wihardjo Mathematics Education Study Program, Faculty of Teacher Training and Education, Universitas Jember, Indonesia https://orcid.org/0000-0003-1377-8172
  • Robiatul Adawiyah Mathematics Education Study Program, Faculty of Teacher Training and Education, Universitas Jember, Indonesia https://orcid.org/0000-0002-8481-2932
  • Saddam Hussen Mathematics Education Study Program, Faculty of Teacher Training and Education, Universitas Jember, Indonesia https://orcid.org/0009-0000-3281-5237
  • Lioni Anka Monalisa Mathematics Education Study Program, Faculty of Teacher Training and Education, Universitas Jember, Indonesia https://orcid.org/0009-0006-3574-524X
Keywords: Atherosclerosis, Coronary Artery, Finite Volume Method, SIMPLE

Abstract

Atherosclerosis is a leading cause of coronary heart disease. This study analyses how elliptically shaped stenoses alter blood-flow velocity in coronary arteries. The governing equations are discretised with the finite-volume method, coupling pressure and velocity through the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm and accelerating convergence with the Successive Over-Relaxation (SOR) technique. A weighted Gauss–Seidel iteration whose over-relaxation factor (  in this work) damps low-frequency error modes, cutting the number of iterations needed for residuals to fall below 10⁻⁴ by roughly 40 % compared with the standard Gauss–Seidel scheme. Simulations of 30 %, 50 %, and 70 % constrictions were carried out in MATLAB R2013a and ANSYS Fluent. Quantitative and qualitative cross-validation of the two software packages confirmed consistent velocity and pressure fields, though minor discrepancies arose from differing numerical schemes and model assumptions, underscoring the need for experimental verification. The highest centre-line velocity occurred at 70 % stenosis—0.72075 m/s in MATLAB versus 0.90 m/s in Fluent—while the lowest was recorded at 30 %. Velocity–pressure profiles showed that increasing inlet velocity or degree of narrowing elevates velocity but decreases pressure, with the largest drop (11492.4 Pa in MATLAB; 11747.32 Pa in Fluent) again at 70% stenosis. Study limitations include modelling blood as a Newtonian fluid and idealising arterial geometry; future work should incorporate non-Newtonian rheology and patient-specific shapes to enhance physiological accuracy.

Downloads

Download data is not yet available.

References

M. A. Hussain, A. Al Mamun, S. A. E. Peters, M. Woodward, and R. R. Huxley, “THE BURDEN OF CARDIOVASCULAR DISEASE ATTRIBUTABLE TO MAJOR MODIFIABLE RISK FACTORS IN INDONESIA,” J Epidemol, vol. 26, no. 10. pp. 515–521, 2016, doi: https://doi.org/10.2188/jea.JE20150178.

M. Soleimani, B. Dashtbozorg, M. Mirkhalaf, and S. M. Mirkhalaf, “A MULTIPHYSICS-BASED ARTIFICIAL NEURAL NETWORKS MODEL FOR ATHEROSCLEROSIS,” Heliyon, vol. 9, no. 7, p. e17902, 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e17902.

W. Chen, Z. Li, Y. Zhao, Y. Chen, and R. Huang, “GLOBAL AND NATIONAL BURDEN OF ATHEROSCLEROSIS FROM 1990 TO 2019: TREND ANALYSIS BASED ON THE GLOBAL BURDEN OF DISEASE STUDY 2019,” Chin. Med. J. (Engl)., vol. 136, no. 20. pp. 2442–2450. 2023, doi: https://doi.org/10.1097/CM9.0000000000002839.

F. Anita, B. Antoro, and S. Barokah, “PENERAPAN SENAM ERGONOMIK TERHADAP PENURUNAN TEKANAN DARAH LANSIA PENDERITA HIPERTENSI,” Media Husada J. Nurs. Sci., vol. 4, no. 2, 2023, doi: https://doi.org/10.57218/jkj.Vol2.Iss2.789.

L. F. Tampubolon, A. Ginting, and F. E. S. Turnip, “GAMBARAN FAKTOR YANG MEMPENGARUHI KEJADIAN PENYAKIT JANTUNG KORONER (PJK) DI PUSAT JANTUNG TERPADU (PJT),” J. Ilm. Permas J. Ilm. STIKES Kendal, vol. 13, no. 3, pp. 1043–1052, 2023, doi: https://doi.org/10.32583/pskm.v13i3.1077.

A. Hussain, M. Naveel, R. Dar, W. Khalid, and E. M. Tag-eldin, “NUMERICAL SIMULATION OF UNSTEADY GENERIC NEWTONIAN BLOOD FLOW AND HEAT TRANSFER THROUGH DISCREPANT SHAPED DILATABLE ARTERIAL STENOSIS,” Results Eng., vol. 18, no. May, p. 101189, 2023, doi: https://doi.org/10.1016/j.rineng.2023.101189.

A. Maharani, Sujarwoto, D. Praveen, D. Oceandy, G. Tampubolon, and A. Patel, “CARDIOVASCULAR DISEASE RISK FACTOR PREVALENCE AND ESTIMATED 10-YEAR CARDIOVASCULAR RISK SCORES IN INDONESIA : THE SMARTHEALTH EXTEND STUDY,” PLoS One, vol. 14, no. 4, pp. 1–13, 2019, doi: https://doi.org/10.1371/journal.pone.0215219.

A. Szpicer et al., “INNOVATIVE IMPLEMENTATION OF COMPUTATIONAL FLUID DYNAMICS IN PROTEINS DENATURATION PROCESS PREDICTION IN GOOSE BREAST MEAT AND HEAT-TREATMENT PROCESSES OPTIMIZATION,” Appl. Sci., vol. 14, no. 13, pp. 1–22, 2024, doi: https://doi.org/10.3390/app14135567.

A. G. Rahma, K. Yousef, and T. Abdelhamid, “BLOOD FLOW CFD SIMULATION ON A CEREBRAL ARTERY OF A STROKE PATIENT,” SN Appl. Sci., vol. 4, no. 10. 2022, doi: https://doi.org/10.1007/s42452-022-05149-y.

M. Madaliev et al., “THE EFFECT OF SLIP ON THE DEVELOPMENT OF FLOW SEPARATION DUE TO A BUMP IN A CHANNEL BASED ON A TWO-FLUID TURBULENCE MODEL,” E3S Web Conf., vol. 508, 2024, doi: https://doi.org/10.1051/e3sconf/202450806003.

H. K. Versteeg and W. Malalasekera, “AN INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS,” 2nd ed., Harlow, England: Pearson Education Limited, 2007.

A. Fatahillah, A. D. Pratiwi, S. Setiawani, A. I. Kristiana, and R. Adawiyah, “NUMERICAL ANALYSIS IN ARTERIAL STENOSIS AFFECTED BY ISCHEMIC HEART DISEASE USING FINITE VOLUME METHOD,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 1, pp. 0179–0192, 2024, doi: https://doi.org/10.30598/barekengvol18iss1pp0179-0192.

N. Georgieva, S. Delcheva, and P. Tsankov, “ANALYSIS OF THE CAPABILITIES OF SOFTWARE PRODUCTS TO SIMULATE THE BEHAVIOR OF DYNAMIC FLUID FLOWS,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1031, no. 1, 2021, doi: https://doi.org/10.1088/1757-899X/1031/1/012079.

R. Shoufiah and S. Nuryanti, FAKTOR-FAKTOR PENENTU KUALITAS HIDUP PASIEN JANTUNG KORONER. Yogyakarta, Indonesia: CV. Jejak Pustaka, 2022.

S. S. Narayan, S. Saha, A. Bhattacharjee, M. I. Khan, F. Zouidi, and S. M. Eldin, “ASSESSING THE IMPACT OF HYPERVISCOSITY ON STENOSIS SHAPE IN COVID PATIENTS,” Ain Shams Eng. J., vol. 14, no. 12, p. 102227, 2023, doi: https://doi.org/10.1016/j.asej.2023.102227.

L. Bachtiar, R. A. Gustaman, and S. Maywati, “Faktor risiko yang berhubungan dengan kejadian penyakit jantung koroner (PJK),” vol. 19, no. 1, pp. 52–60. 2023, doi: 10.37058/jkki.v19i1.6862.

A. Hussain, M. N. Riaz Dar, W. K. Cheema, E. M. Tag-eldin, dan R. Kanwal, “Numerical simulation of unsteady generic Newtonian blood flow and heat transfer through discrepant shaped dilatable arterial stenosis,” Results in Engineering, vol. 18, 2023, doi: 10.1016/j.rineng.2023.101189.

H. Gao, J. Zhang, H. Li, and X. Zhang, “Hemodynamic analysis of stenosed arteries using computational fluid dynamics,” Appl. Sci., vol. 10, no. 8, p. 2923, 2020, doi: 10.3390/app10082923.

Y. Zhang, J. Wu, and K. Xu, “Numerical simulation of blood flow in stenosed arteries with non-Newtonian fluid model,” Int. J. Numer. Meth. Biomed. Eng., vol. 34, no. 4, p. e2948, 2018, doi: 10.1002/cnm.2948.

U. Morbiducci, R. Ponzini, G. Rizzo, and A. Redaelli, “Hemodynamics and atherosclerosis: Insights and perspectives from computational studies,” Curr. Vasc. Pharmacol., vol. 11, no. 4, pp. 552–569, 2013, doi: 10.2174/1570161111311040004.

I. P. Widiarta, M. Suarda, M. Sucipta, and I. G. K. Sukadana, “Simulasi CFD pertukaran udara di ruang tindakan klinik kesehatan,” J. METTEK, vol. 8, no. 2, p. 83, 2022, doi: 10.24843/mettek.2022.v08.i02.p03.

MATLAB, version R2013a, The MathWorks Inc., Natick, Massachusetts, 2013.

J. WANG, “The application of matlab in the mathematics teaching of computer majors,” Scalable Comput., vol. 25, no. 4, pp. 2916–2933, 2024, doi: 10.12694/scpe.v25i4.2889.

A. Fatahillah, M. Jannah, S. Setiawani, T. B. Setiawan, and A. I. Kristiana, “Numerical analysis of airflow in trachea affected by thyroid cancer using finite volume method,” CAUCHY J. Mat. Murni dan Apl., vol. 9, no. 1, pp. 82–93, 2024, doi: 10.18860/ca.v9i1.24376.

S. Y. J. Prasetyo, “Metode Penelitian Penginderaan Jauh,” [Online]. Tersedia: https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=+sri+yulianto+joko+prasetyo+Metode+Penelitian+Penginderaan+Jauh&btnG=, diakses Jan. 20, 2024.

I. Junaedi et al., Manifestasi Kurikulum Luar, CV. Zenius Publisher, 2022. [Online]. Tersedia: https://www.google.co.id/books/edition/MANIFESTASI_KURIKULUM_LUAR_NEGERI/NR2HEAAAQBAJ?hl=id&gbpv=1&dq=Manifestasi+Kurikulum+Luar&pg=PT92&printsec=frontcover, diakses Feb. 25, 2024.

S. S. Lim, S. Park, B. H. Oh, K. Jung, J. W. Bae, dan D. H. Bae, “RNF213 vasculopathy manifested in various forms within a family: A case report,” Medicine (United States), vol. 102, no. 50. p. e36627, 2023, doi: 10.1097/MD.0000000000036627.

ANSYS®, ANSYS Fluent User’s Guide, Release 2024 R1, Student Version, ANSYS, Inc., Canonsburg, PA, USA, 2024.

M. Roy, B. S. Sikarwar, M. Bhandwal, and P. Ranjan, “Modelling of blood flow in stenosed arteries,” Procedia Comput. Sci., vol. 115, pp. 821–830. 2017, doi: 10.1016/j.procs.2017.09.164.

A. Fatahillah, M. U. Nuha, and S. Setiawani, “Analisis numerik aliran udara pada rongga hidung akibat penyakit sinusitis menggunakan metode volume hingga,” Limits J. Math. Its Appl., vol. 19, no. 2, pp. 217–227, 2022, doi: 10.12962/limits.v19i2.13683.

Published
2025-09-01
How to Cite
[1]
A. Fatahillah, “NUMERICAL ANALYSIS OF BLOOD VESSEL CONSTRICTION DUE TO ATHEROSCLEROSIS DISEASE USING FINITE VOLUME METHOD”, BAREKENG: J. Math. & App., vol. 19, no. 4, pp. 2661-2678, Sep. 2025.