IMPLEMENTATION OF RESPONSE-BASED UNIT SEGMENTATION IN PARTIAL LEAST SQUARE (REBUS-PLS) FOR ANALYSIS AND REGIONAL GROUPING

Keywords: Health, Latent variables, R-square, SEM-PLS

Abstract

Housing environmental health is a key indicator of community quality of life. In West Kalimantan Province, variations in geographical and socioeconomic conditions contribute to disparities in housing conditions. This study analyzes and classifies regions based on factors influencing housing environmental health using the Response-Based Unit Segmentation in Partial Least Squares (REBUS-PLS) method. REBUS-PLS helps detect unobserved heterogeneity by identifying subgroups with different structural relationships. The exogenous latent variables include household economics, education, and housing facilities, while the endogenous variable is housing environmental health, measured through 15 indicators. The results of the SEM-PLS analysis obtained 3 paths that had a significant effect: household economics on housing facilities, household economics on education, and housing facilities on the health of the Housing environment. SEM-PLS assumes homogeneity across data, meaning all observations follow the same structural pattern. However, this assumption may not hold, especially with data representing diverse regions. To address potential heterogeneity, REBUS-PLS was applied. The analysis revealed two distinct segments, each with stronger explanatory power than the global model, as indicated by higher R² values (Segment 1 = 95.6%, Segment 2 = 91.4%, compared to 87.7% in the global model). Segment 1 consists of Landak, Sanggau, Sekadau, Kayong Utara, and Singkawang City. Segment 2 includes Bengkayang, Melawi, Ketapang, Kapuas Hulu, Sanggau, Sekadau, Sintang, and Pontianak City. These findings confirm the presence of structural heterogeneity and demonstrate that REBUS-PLS provides a more accurate understanding of the factors affecting housing environmental health across regions.

Downloads

Download data is not yet available.

References

Suparyanto and Rosad, PRINSIP KESEHATAN MASYARAKAT. Bandung: CV Media Indonesia, 2020.

R. Santi, H. Hz, and H. Rawalilah, “PENYULUHAN TENTANG RUMAH SEHAT DALAM UPAYA PENCEGAHAN PENYAKIT BERBASIS LINGKUNGAN DI KELURAHAN 26 ILIR PALEMBANG TAHUN 2023,” SAFARI J. Pengabdi. Masy. Indones., vol. 3, no. 3, pp. 207–220, 2023.doi: https://doi.org/10.56910/safari.v3i3.854

K. Risnawati, “ANALISIS KONSEP PENCEGAHAN PERMUKIMAN KUMUH DI KABUPATEN SOPPENG,” J. Al Hadarah Al Islam., vol. 2, no. 2, pp. 38–52, 2022.

F. S. Pratiwi, S. Sudarno, and A. Rusgiyono, “PENERAPAN RESPONSE BASED UNIT SEGMENTATION IN PARTIAL LEAST SQUARE (REBUS-PLS) UNTUK ANALISIS DAN PENGELOMPOKAN WILAYAH (STUDI KASUS: KESEHATAN LINGKUNGAN PERUMAHAN DI PROVINSI JAWA TENGAH),” J. Gaussian, vol. 9, no. 3, pp. 364–375, 2020, doi: https://doi.org/10.14710/j.gauss.v9i3.28927.

E. D. Anggita, A. Hoyyi, and A. Rusgiyono, “ANALISIS STRUCTURAL EQUATION MODELILING PENDEKATAN PARTIAL LEAST SQUARE DAN PENGELOMPOKAN DENGAN FINITE MIXTURE PLS (FIMIX-PLS) (STUDI KASUS: KEMISKINAN RUMAH TANGGA DI INDONESIA 2017),” J. Gaussian, vol. 8, no. 1, pp. 35–45, 2019, doi: https://doi.org/10.14710/j.gauss.v8i1.26620.

D. S. Vanisa, T. R. Rahmanita, E. Ana, and A. Kurniawan, “PROVINCIAL SEGMENTATION IN INDONESIA: EXPLORING FACTORS INFLUENCING EDUCATION WITH SEM-PLS METHOD, INCORPORATING MODERATION EFFECTS AND FIMIX-PLS APPROACH,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 3, pp. 1955–1962, 2024, doi: https://doi.org/10.30598/barekengvol18iss3pp1955-1962.

R. R. Marliana, “PARTIAL LEAST SQUARE-STRUCTURAL EQUATION MODELING PADA PARTIAL LEAST SQUARES-STRUCTURAL EQUATION MODELING PADA HUBUNGAN,” J. Mat. Stat. dan Komputasi, vol. 16, no. 2, pp. 174–186, 2020, doi: https://doi.org/10.20956/jmsk.v16i2.7851.

R. S. Hamid and S. M. Anwar, STRUCTURAL EQUATION MODELING (SEM) BERBASIS VARIAN: KONSEP DASAR DAN APLIKASI PROGRAM SMART PLS 3.2.8 DALAM RISET BISNIs. PT Inkubator Penulis Indonesa, 2019.

M. A. Zhiqiang, M. Bwabo, L. I. Mingxing, H. U. Weijun, and F. Panga, “UNOBSERVED HETEROGENEITY IN PUBLIC PROCUREMENT GOVERNANCE AND VALUE FOR MONEY,” Lex Localis, vol. 18, no. 1, pp. 95–121, 2020, doi: 10.4335/18.1.95-121(2020).

V. . Vinzi, L. Trinchera, S. Squillacciotti, and M. Tenenhaus, “REBUSPLS: A RESPONSE-BASED PROCEDURE FOR DETECTING UNIT SEGMENTS IN PLS PATH MODELLING. MODELLING. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 24,” 2008, doi: https://doi.org/10.1002/asmb.728.

L. Zanin, “DETECTING UNOBSERVED HETEROGENEITY IN THE RELATIONSHIP BETWEEN SUBJECTIVE WELL-BEING AND SATISFACTION IN VARIOUS DOMAINS OF LIFE USING THE REBUS-PLS PATH MODELLING APPROACH: A CASE STUDY,” Soc. Indic. Res., vol. 110, no. 1, pp. 281–304, 2013, doi: https://doi.org/10.1007/s11205-011-9931-5.

R. A. Z. Tama, M. M. Hoque, Y. Liu, M. J. Alam, and M. Yu, “AN APPLICATION OF PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING (PLS-SEM) TO EXAMINING FARMERS’ BEHAVIORAL ATTITUDE AND INTENTION TOWARDS CONSERVATION AGRICULTURE IN BANGLADESH,” Agric., vol. 13, no. 2, 2023, doi: https://doi.org/10.3390/agriculture13020503.

M. A. Mukid, B. W. Otok, and A. Suharsono, “SEGMENTATION IN STRUCTURAL EQUATION MODELING USING A COMBINATION OF PARTIAL LEAST SQUARES AND MODIFIED FUZZY CLUSTERING,” Symmetry (Basel)., vol. 14, no. 11, 2022, doi: https://doi.org/10.3390/sym14112431.

C. Quintano and P. Mazzocchi, “EXAMINING A MULTI-DIMENSIONAL UNDECLARED WORK VIA THE REBUS-PLS,” J. Econ. Stud., vol. 47, no. 2, pp. 405–430, 2020, doi: https://doi.org/10.1108/JES-08-2018-0288.

E. Piga, “HOME BIAS : PLS PM APPLICATION ON BANKING SECTOR,” 2017.

G. Assaker, R. Hallak, and P. O’Connor, “EXAMINING HETEROGENEITY THROUGH RESPONSE-BASED UNIT SEGMENTATION IN PLS-SEM: A STUDY OF HUMAN CAPITAL AND FIRM PERFORMANCE IN UPSCALE RESTAURANTS. CURRENT ISSUES IN TOURISM, 23(2),” 2018, doi: https://doi.org/10.1080/13683500.2018.1490253.

H. A. Reagan, “ANALISIS PENGARUH PERTUMBUHAN EKONOMI TERHADAP PEMBANGUNAN MANUSIA DENGAN RESPONSE BASED UNIT SEGMENTATION IN PARTIAL LEAST SQUARE (REBUS PLS),” Institut Teknologi Sepuluh Nopember, 2016.

X. Y. Xu, S. M. U. Tayyab, Q. D. Jia, and K. Wu, “EXPLORING THE GAMIFICATION AFFORDANCES IN ONLINE SHOPPING WITH THE HETEROGENEITY EXAMINATION THROUGH REBUS-PLS,” J. Theor. Appl. Electron. Commer. Res., vol. 18, no. 1, pp. 289–310, 2023, doi: https://doi.org/10.3390/jtaer18010016.

B. W. Otok, Purhadi, R. Sriningsih, and D. S. Dila, “SEGMENTATION OF TODDLER NUTRITIONAL STATUS USING REBUS AND FIMIX PARTIAL LEAST SQUARE IN SOUTHEAST SULAWESI,” MethodsX, vol. 12, no. September 2023, 2024, doi: https://doi.org/10.1016/j.mex.2023.102515.

X. Angerri and K. Gibert, “VARIABLE SELECTION FOR MEANINGFUL CLUSTERING OF MULTITOPIC TERRITORIAL DATA,” Mathematics, vol. 11, no. 13, 2023, doi: https://doi.org/10.3390/math11132863.

M. H. Plitt and L. M. Giocomo, “EXPERIENCE-DEPENDENT CONTEXTUAL CODES IN THE HIPPOCAMPUS,” Nat. Neurosci., vol. 24, no. 5, pp. 705–714, 2021, doi: https://doi.org/10.1038/s41593-021-00816-6.

Ramlawati and S. Murniati, “THE INFLUENCE OF PRODUCT QUALITY AND PRICE ON PURCHASING DECISIONS,” J. Manag. Res. Stud., vol. 1, no. 1, pp. 86–94, 2023, doi: https://doi.org/10.61665/jmrs.v1i1.29.

J. F. Hair, G. T. Hult, C. Ringle, and M. Sarstedt, A PRIMER ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING (PLS-SEM) - Joseph F. Hair, Jr., G. Tomas M. Hult, Christian Ringle, Marko Sarstedt. 2017.doi: https://doi.org/10.15358/9783800653614

M. R. Ab Hamid, W. Sami, and M. H. Mohmad Sidek, “DISCRIMINANT VALIDITY ASSESSMENT: USE OF FORNELL & LARCKER CRITERION VERSUS HTMT CRITERION,” J. Phys. Conf. Ser., vol. 890, no. 1, 2017, doi: https://doi.org/10.1088/1742-6596/890/1/012163.

I. Ghozali and H. Latan, “PARTIAL LEAST SQUARE CONCEPTS, METHODS AND APPLICATIONS USING THE WARPPLS 5.0 PROGRAM,” Univ. Diponegoro, Semarang, vol. 12, no. 1, pp. 1–14, 2014.

M. Ardiana et al., “PENGARUH SELF CONTROL TERHADAP PERILAKU KEUANGAN MAHASISWA FAKULTAS EKONOMI UNIVERSITAS HASYIM ASY’ARI,” Pros. Semin. Nas. Sains, Teknol. Ekon. Pendidik. dan Keagamaan, vol. 7, pp. 114–121, 2023, [Online]. Available: https://ejournal.unhasy.ac.id/index.php/SAINSTEKNOPAK/article/view/4953 doi: https://doi.org/10.32682/jpekbm.v7i1.3060

I. Ghozali and H. Latan, PARTIAL LEAST SQUARE KONSEP,TEKNIK, DAN APLIKASI MENGGUNAKAN SMARTPLS 3.0 EDISI 2. Semarang : Badan Penerbit UNDIP, 2015.

S. Katmawanti, L. Nikmatasari, and S. Nurrochmah, “THE IMPACT OF EDUCATION AND INCOME ON ENVIRONMENTAL HEALTH ASPECTS IN URBAN HOUSEHOLDS,” vol. 31, no. Ismophs 2019, pp. 95–100, 2020, doi: https://doi.org/10.2991/ahsr.k.201203.018

C. Annisa and S. Susilawati, “GAMBARAN SANITASI LINGKUNGAN TERHADAP SARANA AIR BERSIH DAN JAMBAN KELUARGA DI KELURAHAN SUKARAJA,” PubHealth J. Kesehat. Masy., vol. 1, no. 1, pp. 85–90, 2022, doi: https://doi.org/10.56211/pubhealth.v1i1.46.

Nurhayati, A. M. Nasution, R. Masry, A. D. Rahmadani, and D. P. Sari, “SYSTEMATIC REVIEW : SANITASI LINGKUNGAN DI WILAYAH PESISIR,” J. Kesehat. Tambusai, vol. 5, no. 2, pp. 4439–4448, 2024.

A. N. I. Berutu and S. Susilawati, “SANITASI LINGKUNGAN PESISIR DI PANTAI GUDANG GARAM DESA KOTA PARI SERDANG BEDAGAI,” Naut. J. Ilm. Multidisiplin Indones., vol. 1, no. 5, pp. 253–259, 2022, [Online]. Available: https://jurnal.arkainstitute.co.id/index.php/nautical/article/view/294 doi: https://doi.org/10.55904/nautical.v1i5.294

M. Wetzels, G. Odekerken-Schröder, and C. Van Oppen, “USING PLS PATH MODELING FOR ASSESSING HIERARCHICAL CONSTRUCT MODELS: GUIDELINES AND EMPIRICAL ILLUSTRATION,” MIS Q. Manag. Inf. Syst., vol. 33, no. 1, pp. 177–196, 2009, doi: https://doi.org/10.2307/20650284

Published
2025-11-24
How to Cite
[1]
H. Al-Ham, N. Satyahadewi, and P. Preatin, “IMPLEMENTATION OF RESPONSE-BASED UNIT SEGMENTATION IN PARTIAL LEAST SQUARE (REBUS-PLS) FOR ANALYSIS AND REGIONAL GROUPING”, BAREKENG: J. Math. & App., vol. 20, no. 1, pp. 0197-0210, Nov. 2025.