NIL DERIVATIONS AND d-IDEALS ON POLYNOMIAL RINGS

  • Ditha Lathifatul Mursyidah Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia https://orcid.org/0009-0005-3869-7952
  • Fitriani Fitriani Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia https://orcid.org/0000-0002-7552-9107
  • Bernadhita Herindri Samodera Utami Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia https://orcid.org/0009-0003-5670-0161
  • Ahmad Faisol Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia https://orcid.org/0000-0003-2403-9404
Keywords: d-ideal, Linear combinations, Nil derivation, Polynomial ring

Abstract

Let  be a ring. An additive mapping  is called derivation if  satisfies Leibniz's rule, i.e.,   for every   In a special case, for each  there exists a positive integer  which depends on  such that , then  is called as a nil derivation on . The concept of - ideal which is an ideal that remains stable under the derivation operation . This research presents a systematic construction of nil derivations on polynomial rings and investigates their corresponding nilpotency indices. Unlike prior studies that often treat derivations in abstract terms, this work emphasizes explicit constructions, offering concrete examples and techniques for generating such derivations. A key focus is the relationship between nil derivations and general nilpotent derivations, including an analysis of their linear combinations. Furthermore, the study provides new insights into the behavior of nil derivations in the context of d-ideals, shedding light on their structural properties within ring theory. To enhance understanding, each theoretical development is supported by illustrative examples, reinforcing the applicability and significance of the results.

Downloads

Download data is not yet available.

References

E. Guven, “ON (, )-DERIVATION IN PRIME RINGS,” Int. J. Contemp. Math. Sci., vol. 3, no. 26, pp. 1289–1293, 2008.

O. Golbasi and E. Koc, “GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS,” Turk. J. Math., vol. 35, pp. 23–28, 2011.doi: https://doi.org/10.3906/mat-0807-27

S. Ali, B. Dhara, and M. Khan, “ON PRIME AND SEMIPRIME RINGS WITH ADDITIVE MAPPINGS AND DERIVATIONS,” Univers. J. Comput. Math., vol. 11, no. 6, pp. 291–300, 2017.

S. Ali and H. Alhazmi, “ON GENERALIZED DERIVATIONS AND COMMUTATIVITY OF PRIME RINGS WITH INVOLUTION,” Int. J. Algebr., vol. 11, no. 6, pp. 291–300, 2017.doi: https://doi.org/10.12988/ija.2017.7839

M. Atteya, “COMMUTATIVITY WITH DERIVATIONS OF SEMIPRIME RINGS,” Discuss. Math. Gen. Algebr. Appl., vol. 40, pp. 165–175, 2020.doi: https://doi.org/10.7151/dmgaa.1333

S. Belkadi, S. Ali, and L. Taofiq, “ON NILPOTENT HOMODERIVATIONS IN PRIME RINGS,” Georg. Math. J., vol. 1, pp. 17–24, 2024.doi: https://doi.org/10.1515/gmj-2023-2065

S. Belkadi, S. Ali, and L. Taoufiq, “ON N-JORDAN HOMODERIVATIONS IN RINGS,” Georg. Math. J., vol. 1, pp. 17–24, 2024. doi: https://doi.org/10.1515/gmj-2023-2065

T. M. S. El-Sayiad, A. Ageeb, and A. Ghareeb, “CENTRALIZING N-HOMODERIVATIONS OF SEMIPRIME RINGS,” J. Math., p. 1112183, 2022. doi: https://doi.org/10.1155/2022/1112183

S. F. El-Deken and M. M. El-Soufi, “ON CENTRALLY-EXTENDED REVERSE AND GENERALIZED REVERSE DERIVATIONS,” Indian J. Pure Appl. Math., vol. 51, no. 3, pp. 1165–1180, 2020. doi: https://doi.org/10.1007/s13226-020-0456-y

M. M. El-Soufi and A. Ghareeb, “CENTRALLY EXTENDED-HOMODERIVATIONS ON PRIME AND SEMIPRIME RINGS,” J. Math., p. 2584177, 2022.doi: https://doi.org/10.1155/2022/2584177

A. B. Thomas, N. P. Puspita, and Fitriani, “DERIVATION ON SEVERAL RINGS,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 3, pp. 1729–1738, Jul. 2024, doi: https://doi.org/10.30598/barekengvol18iss3pp1729-1738.

O. H. Ezzat, “RINGS WITH CENTRALLY EXTENDED HIGHER *DERIVATION,” Adv. Appl. Clifford Algebr., vol. 23, no. 21, 2023.doi: https://doi.org/10.1007/s00006-023-01265-z

A. Gouda and H. Nabiel, “ON CENTRALLY-EXTENDED LEFT DERIVATIONS IN RINGS,” Arab. J. Math., vol. 13, pp. 513–519, 2024.doi: https://doi.org/10.1007/s40065-024-00481-0

J. Bracic, “REPRESENTATIONS AND DERIVATIONS OF MODULES,” Irish Math. Soc. Bull., vol. 47, pp. 27–39, 2001.doi: https://doi.org/10.33232/BIMS.0047.27.40

A. Patra and R. V. Gurjar, “ON MINIMUM NUMBER OF GENERATORS FOR SOME DERIVATION MODULES,” J. Pure Appl. Algebr., vol. 226, no. 11, p. 107105, 2022.doi: https://doi.org/10.1016/j.jpaa.2022.107105

K. Retert, “SETS OF COMMUTING DERIVATIONS AND SIMPLICITY,” Commun. Algebr., vol. 34, no. 8, pp. 2941–2963, 2006.doi: https://doi.org/10.1080/00927870600639492

Z. Chen and B. Wang, “COMMUTING DERIVATIONS AND AUTOMORPHISMS OF CERTAIN NILPOTENT LIE ALGEBRAS OVER COMMUTATIVE RINGS,” Commun. Algebr., vol. 43, no. 5, pp. 2044–2061, 2015.doi: https://doi.org/10.1080/00927872.2014.882932

S. Maubach, “THE COMMUTING DERIVATION CONJECTURE,” J. Pure Appl. Algebr., vol. 179, no. 1, pp. 159–168, 2003.doi: https://doi.org/10.1016/S0022-4049(02)00198-6

G. Pogudin, “A PRIMITIVE ELEMENT THEOREM FOR FIELDS WITH COMMUTING DERIVATIONS AND AUTOMORPHISMS,” Sel. Math., vol. 25, no. 4, pp. 1–19, 2019.doi: https://doi.org/10.1007/s00029-019-0504-9

Fitriani, I. E. Wijayanti, A. Faisol, and S. Ali, “COMMUTING AND CENTRALIZING MAPS ON MODULES,” vol. 10, no. 3, pp. 691–697, 2025.doi: https://doi.org/10.26554/sti.2025.10.3.690-697

Fitriani, I. E. Wijayanti, A. Faisol, and S. Ali, “ON F-DERIVATIONS ON POLYNOMIAL MODULES,” J. Algebr. its Appl., vol. 24, no. 6, pp. 1–14, 2024, doi: https://doi.org/10.1142/S0219498825501555.

M. K. Malik, D.S., Moderson, J.M., and Sen, FUNDAMENTAL OF ABSTRACT ALGEBRA. New York: McGraw-Hill Company, 1998.

L. O. Chung, “NIL DERIVATIONS,” J. Algebr., vol. 95, pp. 20–30, 1985.doi: https://doi.org/10.1016/0021-8693(85)90089-4

M. R. Helmi, H. Marubayashi, and A. Ueda, “DIFFERENTIAL POLYNOMIAL RINGS WHICH ARE GENERALIZED ASANO PRIME RING,” Indian J. Pure Appl. Math., vol. 44(5), pp. 673–681, 2013.doi: https://doi.org/10.1007/s13226-013-0035-6

S. Ali, N. N. Rafiquee, and V. Varshney, “CERTAIN TYPES OF DERIVATIONS IN RINGS: A SURVEY,” J. Indones. Math. Soc, vol. 30, no. 02, pp. 256–306, 2024.doi: https://doi.org/10.22342/jims.30.2.1623.256-306

I. Ernanto, “SIFAT-SIFAT RING FAKTOR YANG DILENGKAPI DERIVASI,” J. Fundam. Math. Appl., vol. 1, no. 1, p. 12, Jun. 2018, doi: https://doi.org/10.14710/jfma.v1i1.3.

Fitriani and A. Faisol, GRUP. Yogyakarta: Matematika, 2022.

O. Luisa, Yanita, and N. N. Bakar, “TEOREMA PEMBAGIAN PADA RING POLINOMIAL R[X],” J. Mat. UNAND, vol. VIII, no. 1, pp. 249–254, 2019.doi: https://doi.org/10.25077/jmu.8.1.249-254.2019

S. Wahyuni, I. E. Wijayanti, D. A. Yuwaningsih, and A. D. Hartanto, TEORI RING DAN MODUL. Yogyakarta: Gadjah Mada University Press, 2021.

M. Sahai and S. F. Ansari, “Derivations and centralizers in rings,” Palest. J. Math., vol. 11, no. (2), pp. 413–419, 2022.

Published
2025-11-24
How to Cite
[1]
D. L. Mursyidah, F. Fitriani, B. H. S. Utami, and A. Faisol, “NIL DERIVATIONS AND d-IDEALS ON POLYNOMIAL RINGS”, BAREKENG: J. Math. & App., vol. 20, no. 1, pp. 0325-0334, Nov. 2025.