A STUDY OF DERIVATIONS AND LINEAR MAPPINGS ON SKEW GENERALIZED POWER SERIES MODULES

  • Ahmad Faisol Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia https://orcid.org/0000-0003-2403-9404
  • Fitriani Fitriani Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia https://orcid.org/0000-0002-7552-9107
Keywords: Derivations, Modules, Rings, Skew Generalized Power Series Rings, Skew Generalized Power Series Modules

Abstract

This paper investigates the structure of skew generalized power series modules over skew generalized power series rings, emphasizing the extension of derivations in this context. We define and study additive mappings that generalize classical derivations with respect to module homomorphisms and ring derivations. Under suitable compatibility conditions, we construct corresponding derivations on skew generalized power series modules and establish their fundamental properties. These findings contribute to a broader understanding of how derivations can be systematically extended from classical module theory to generalized algebraic frameworks.

Downloads

Download data is not yet available.

Author Biography

Fitriani Fitriani, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia

Jurusan Matematika FMIPA Universitas Lampung

References

D. S. Dummit and R. M. Foote, ABSTRACT ALGEBRA, Third Edit. New York: John Wiley and Sons, 2004. [Online]. Available: https://www.wiley.com/en-dk/Abstract+Algebra%2C+3rd+Edition-p-9780471433347

P. Ribenboim, “Generalized Power Series Rings,” in Lattices, Semigroups, and Universal Algebra, J. Almeida, G. Bordalo, and P. Dwinger, Eds., Boston, 1990. doi: https://doi.org/10.1007/978-1-4899-2608-1_26.

R. Gilmer, COMMUTATIVE SEMIGROUP RINGS. Chicago and London: The University of Chicago, 1984. [Online]. Available: https://press.uchicago.edu/ucp/books/book/chicago/C/bo5965747.html

T. W. Hungerford, ALGEBRA. New York: Springer-Verlag, 1974. [Online]. Available: https://link.springer.com/book/10.1007/978-1-4612-6101-8

W. A. Adkins and S. H. Weintraub, ALGEBRA: AN APPROACH VIA MODULE THEORY. New York: Springer-Verlag, 1992. [Online]. Available: https://www.amazon.com/Algebra-Approach-Module-Graduate-Mathematics/dp/0387978399

G. A. Elliott and P. Ribenboim, “FIELDS OF GENERALIZED POWER SERIES,” Arch. der Math., vol. 54, no. 4, pp. 365–371, 1990, doi: https://doi.org/10.1007/BF01189583.

P. Ribenboim, “RINGS OF GENERALIZED POWER SERIES: NILPOTENT ELEMENTS,” Abh. Math. Sem. Univ. Hambg., vol. 61, pp. 15–33, 1991, doi: https://doi.org/10.1007/BF02950748

P. Ribenboim, “NOETHERIAN RINGS OF GENERALIZED POWER SERIES,” J. Pure Appl. Algebr., vol. 79, no. 3, pp. 293–312, 1992, doi: https://doi.org/10.1016/0022-4049(92)90056-L

P. Ribenboim, “RINGS OF GENERALIZED POWER SERIES II: UNITS AND ZERO-DIVISORS,” J. Algebr., vol. 168, no. 1, pp. 71–89, 1994, doi: https://doi.org/10.1006/jabr.1994.1221

P. Ribenboim, “SPECIAL PROPERTIES OF GENERALIZED POWER SERIES,” J. Algebr., vol. 173, no. 3, pp. 566–586, 1995, doi: https://doi.org/10.1006/jabr.1995.1103

P. Ribenboim, “SEMISIMPLE RINGS AND VON NEUMANN REGULAR RINGS OF GENERALIZED POWER SERIES,” J. Algebr., vol. 198, no. 2, pp. 327–338, 1997, doi: https://doi.org/10.1006/jabr.1997.7063.

A. Benhissi and P. Ribenboim, “ORDERED RINGS OF GENERALIZED POWER SERIES,” in Ordered Algebraic Structures, C. Martinez, J., Holland, Ed., Dordrecht: Springer, 1993. doi: https://doi.org/10.1007/978-94-011-1723-4_7.

S. Priess-Crampe and P. Ribenboim, “FIXED POINTS, COMBS AND GENERALIZED POWER SERIES,” Abhandlungen aus dem Math. Semin. der Univ. Hambg., vol. 63, pp. 227–244, 1993, doi: https://doi.org/10.1007/BF02941344.

W. A. Pardede, A. Faisol, and F. Fitriani, “THE X[[S]]-SUB-EXACT SEQUENCE OF GENERALIZED POWER SERIES RINGS,” Al-Jabar J. Pendidik. Mat., vol. 11, no. 2, pp. 299–306, 2020, doi: https://doi.org/10.24042/ajpm.v11i2.6760.

K. Varadarajan, “NOETHERIAN GENERALIZED POWER SERIES RINGS AND MODULES,” Commun. Algebr., vol. 29, no. 1, pp. 245–251, 2001, doi: https://doi.org/10.1081/AGB-100000797.

K. Varadarajan, “A GENERALIZATION OF HILBERT’S BASIS THEOREM,” Commun. Algebr., vol. 10, no. 20, pp. 2191–2204, 1982, doi: https://doi.org/10.1080/00927878208822829

A. Faisol, B. Surodjo, and S. Wahyuni, “THE SUFFICIENT CONDITIONS FOR R[X]-MODULE M[X] TO BE S[X]-NOETHERIAN,” Eur. J. Math. Sci., vol. 5, no. 1, pp. 1–13, 2019, [Online]. Available: https://www.researchgate.net/publication/330673171_The_Sufficient_Conditions_for_RX-module_MX_to_be_SX-Noetherian

A. Faisol, Fitriani, and Sifriyani, “DETERMINING THE NOETHERIAN PROPERTY OF GENERALIZED POWER SERIES MODULES BY USING X-SUB-EXACT SEQUENCE,” in J. Phys.: Conf. Ser. 1751, 2021, p. 012028. [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/1751/1/012028

A. Faisol, B. Surodjo, and S. Wahyuni, “T[[S]]-NOETHERIAN PROPERTY ON GENERALIZED POWER SERIES MODULES,” JP J. Algebr. Number Theory Appl., vol. 43, no. 1, pp. 1–12, 2019, doi: https://doi.org/10.17654/NT043010001

R. Mazurek and M. Ziembowski, “ON VON NEUMANN REGULAR RINGS OF SKEW GENERALIZED POWER SERIES,” Commun. Algebr., vol. 36, no. 5, pp. 1855–1868, 2008, doi: ttps://doi.org/10.1080/00927870801941150.

R. Mazurek and M. Ziembowski, “THE ASCENDING CHAIN CONDITION FOR PRINCIPAL LEFT OR RIGHT IDEALS OF SKEW GENERALIZED POWER SERIES RINGS,” J. Algebr., vol. 322, no. 4, pp. 983–994, 2009, doi: https://doi.org/10.1016/j.jalgebra.2009.03.040

R. Mazurek and M. Ziembowski, “WEAK DIMENSION AND RIGHT DISTRIBUTIVITY OF SKEW GENERALIZED POWER SERIES RINGS,” J. Math. Soc. Japan, vol. 62, no. 4, pp. 1093–1112, 2010, doi: https://doi.org/10.2969/jmsj/06241093

R. Mazurek, “ROTA-BAXTER OPERATORS ON SKEW GENERALIZED POWER SERIES RINGS,” J. Algebr. its Appl., vol. 13, no. 7, pp. 1–10, 2014, doi: https://doi.org/10.1142/S0219498814500480

R. Mazurek, “LEFT PRINCIPALLY QUASI-BAER AND LEFT APP-RINGS OF SKEW GENERALIZED POWER SERIES,” J. Algebr. its Appl., vol. 14, no. 3, pp. 1–36, 2015, doi: https://doi.org/10.1142/S0219498815500383

R. Mazurek and K. Paykan, “SIMPLICITY OF SKEW GENERALIZED POWER SERIES RINGS,” New York J. Math., vol. 23, pp. 1273–1293, 2017, [Online]. Available: https://nyjm.albany.edu/j/2017/23-56p.pdf

A. Faisol, B. Surodjo, and S. Wahyuni, “THE IMPACT OF THE MONOID HOMOMORPHISM ON THE STRUCTURE OF SKEW GENERALIZED POWER SERIES RINGS,” Far East J. Math. Sci., vol. 103, no. 7, pp. 1215–1227, 2018, doi: https://doi.org/10.17654/MS103071215

S. Rugayah, A. Faisol, and Fitriani, “MATRIKS ATAS RING DERET PANGKAT TERGENERALISASI MIRING,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 1, pp. 157–166, 2021, doi: https://doi.org/10.30598/barekengvol15iss1pp157-166

A. Faisol and F. Fitriani, “MATRIKS BERSIH KUAT ATAS RING DERET PANGKAT TERGENERALISASI MIRING,” J. Mat. UNAND, vol. 10, no. 3, pp. 385–393, 2021, doi: https://doi.org/10.25077/jmu.10.3.385-393.2021

A. Faisol and Fitriani, “THE RING HOMOMORPHISMS OF MATRIX RINGS OVER SKEW GENERALIZED POWER SERIES RINGS,” CAUCHY J. Mat. Murni dan Apl., vol. 7, no. 1, pp. 129–135, 2021, doi: https://doi.org/10.18860/ca.v7i1.13001

A. Faisol and Fitriani, “IDEMPOTENT MATRIX OVER SKEW GENERALIZED POWER SERIES RINGS,” J. Fundam. Math. Appl., vol. 5, no. 1, pp. 9–15, 2022, doi: https://doi.org/10.14710/jfma.v5i1.11644

A. Faisol and Fitriani, “THE SUFFICIENT CONDITIONS FOR SKEW GENERALIZED POWER SERIES MODULE M[[S,W]] TO BE T[[S,W]]-NOETHERIAN R[[S,W]]-MODULE,” Al-Jabar J. Pendidik. Mat., vol. 10, no. 2, pp. 285–292, 2019, doi: https://doi.org/10.24042/ajpm.v10i2.5042

A. Faisol and Fitriani, “HOMOMORFISMA MODUL DERET PANGKAT TERGENERALISASI MIRING,” J. Mat. Integr., vol. 17, no. 2, pp. 119–126, 2021, doi: https://doi.org/10.24198/jmi.v17.n2.34646.119-126

P. E. Bland, “F-DERIVATIONS ON RINGS AND MODULES,” Comment. Math. Univ. Carolinae, vol. 47, no. 3, pp. 379–390, 2006, [Online]. Available: https://www.emis.de/journals/CMUC/pdf/cmuc0603/bland.pdf

P. E. Bland, “DIFFERENTIAL TORSION THEORY,” J. Pure Appl. Algebr., vol. 204, no. 1, pp. 1–8, 2006, doi: https://doi.org/10.1016/j.jpaa.2005.03.005

O. Gölbaşi and E. Koç, “GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS,” Turkish J. Math., vol. 35, no. 1, pp. 23–28, 2011, doi: https://doi.org/10.3906/mat-0807-27

S. Ali and A. Fošner, “ON GENERALIZED (m,n)-DERIVATIONS AND GENERALIZED (m,n)-JORDAN DERIVATIONS IN RINGS,” Algebr. Colloq., vol. 21, no. 3, pp. 411–420, 2014, doi: https://doi.org/10.1142/S1005386714000352.

S. Ali, M. R. Mozumder, A. Abbasi, and M. S. Khan, “A CHARACTERIZATION OF DERIVATIONS IN PRIME RINGS WITH INVOLUTION,” Eur. J. Pure Appl. Math., vol. 12, no. 3, pp. 1138–1148, 2019, doi: https://doi.org/10.29020/nybg.ejpam.v12i3.3496

J. Bracic, “REPRESENTATIONS AND DERIVATIONS OF MODULES,” Irish Math. Soc. Bull., vol. 47, pp. 27–39, 2021, doi: https://doi.org/10.33232/BIMS.0047.27.40

R. V. Gurjar and A. Patra, “ON MINIMUM NUMBER OF GENERATORS FOR SOME DERIVATION MODULES,” J. Pure Appl. Algebr., vol. 226, no. 11, p. 107105, 2022, doi: https://doi.org/10.1016/j.jpaa.2022.107105

D. Chaudhuri, “(σ,τ)-DERIVATIONS OF GROUP RINGS,” Commun. Algebr., vol. 47, no. 9, pp. 3800–3807, 2019, doi: https://doi.org/10.1080/00927872.2019.1570238

A. A. Arutyunov and L. M. Kosolapov, “DERIVATIONS OF GROUP RINGS FOR FINITE AND FC GROUPS,” Finite Fields their Appl., vol. 76, p. 101921, 2021, doi: https://doi.org/10.1016/j.ffa.2021.101921

M. Ferrero, A. Giambruno, and C. P. Milies, “A NOTE ON DERIVATIONS OF GROUP RINGS,” Can. Math. Bull., vol. 38, no. 4, pp. 434–437, 1995, doi: https://doi.org/10.4153/CMB-1995-063-8

Fitriani, I. E. Wijayanti, A. Faisol, and S. Ali, “ON F-DERIVATIONS ON POLYNOMIAL MODULES,” J. Algebr. its Appl., vol. 24, no. 06, p. 25501555, 2025, doi: https://doi.org/10.1142/S0219498825501555.

Fitriani, I. E. Wijayanti, A. Faisol, and S. Ali, “COMMUTING AND CENTRALIZING MAPS ON MODULES,” Sci. Technol. Indones., vol. 10, no. 3, pp. 690–697, 2025, doi: https://doi.org/10.26554/sti.2025.10.3.690-697

Published
2025-09-01
How to Cite
[1]
A. Faisol and F. Fitriani, “A STUDY OF DERIVATIONS AND LINEAR MAPPINGS ON SKEW GENERALIZED POWER SERIES MODULES”, BAREKENG: J. Math. & App., vol. 19, no. 4, pp. 3047-3058, Sep. 2025.