IMPUTATION OF MISSING DAILY RAINFALL DATA USING CONVOLUTIONAL NEURAL NETWORKS (CNN) WITH SPATIAL INTERPOLATION
Abstract
Accurate rainfall estimation is crucial in climate analysis and water resource planning. Observational data from weather stations play a vital role in climatological analysis as they represent actual conditions at specific locations. However, many observation stations in Indonesia need more complete data, hindering analysis and data-driven decision-making. To address this issue, this study aims to impute missing rainfall data for BMKG stations in East Java using the Convolutional Neural Network (CNN) method. Satellite data used in this study include ERA5 without interpolation and ERA5 with interpolation. The study employs a spatial interpolation approach. Data were split into training and testing datasets with various ratios: 95:5%, 90:10%, 80:20%, 70:30%, and 50:50%. The results show that the CNN method with spatially interpolated satellite data yields better results, with a Mean Absolute Error (MAE) of 7.50 on the training data and 7.05 on the testing data, indicating better generalization capability than the method without interpolation. The combination of CNN and ERA5 with interpolation was chosen for imputing missing rainfall data at BMKG stations in East Java due to its lower MAE.
Downloads
References
H. R. Bedane, K. T. Beketie, E. E. Fantahun, G. L. Feyisa, and F. A. Anose, “THE IMPACT OF RAINFALL VARIABILITY AND CROP PRODUCTION ON VERTISOLS IN THE CENTRAL HIGHLANDS OF ETHIOPIA,” Environmental Systems Research, vol. 11, no. 1, p. 26, Dec. 2022, doi: https://doi.org/10.1186/s40068-022-00275-3 .
B. Hamududu and A. Killingtveit, “ASSESSING CLIMATE CHANGE IMPACTS ON GLOBAL HYDROPOWER,” Energies (Basel), vol. 5, no. 2, pp. 305–322, Feb. 2012, doi: https://doi.org/10.3390/en5020305
T. D. Fletcher, H. Andrieu, and P. Hamel, “UNDERSTANDING, MANAGEMENT AND MODELLING OF URBAN HYDROLOGY AND ITS CONSEQUENCES FOR RECEIVING WATERS: A STATE OF THE ART,” Adv Water Resour, vol. 51, pp. 261–279, Jan. 2013, doi: https://doi.org/10.1016/j.advwatres.2012.09.001
C. J. Walsh, A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman, and R. P. Morgan, “THE URBAN STREAM SYNDROME: CURRENT KNOWLEDGE AND THE SEARCH FOR A CURE,” J North Am Benthol Soc, vol. 24, no. 3, pp. 706–723, Sep. 2005, doi: https://doi.org/10.1899/04-028.1
T. Schnepper, J. Groh, H. H. Gerke, B. Reichert, and T. Pütz, “EVALUATION OF PRECIPITATION MEASUREMENT METHODS USING DATA FROM A PRECISION LYSIMETER NETWORK,” Hydrol Earth Syst Sci, vol. 27, no. 17, pp. 3265–3292, Sep. 2023, doi: https://doi.org/10.5194/hess-27-3265-2023
F. J. Tapiador et al., “GLOBAL PRECIPITATION MEASUREMENTS FOR VALIDATING CLIMATE MODELS,” Atmos Res, vol. 197, pp. 1–20, Nov. 2017, doi: https://doi.org/10.1016/j.atmosres.2017.06.021
M. Bernard and C. Gregoretti, “THE USE OF RAIN GAUGE MEASUREMENTS AND RADAR DATA FOR THE MODEL‐BASED PREDICTION OF RUNOFF‐GENERATED DEBRIS‐FLOW OCCURRENCE IN EARLY WARNING SYSTEMS,” Water Resour Res, vol. 57, no. 3, Mar. 2021, doi: https://doi.org/10.1029/2020WR027893
L. C. Sieck, S. J. Burges, and M. Steiner, “CHALLENGES IN OBTAINING RELIABLE MEASUREMENTS OF POINT RAINFALL,” Water Resour Res, vol. 43, no. 1, Jan. 2007, doi: https://doi.org/10.1029/2005WR004519
S. A. Rafhida, S. Nurdiati, R. Budiarti, and M. K. Najib, “BIAS CORRECTION OF LAKE TOBA RAINFALL DATA USING QUANTILE DELTA MAPPING,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 9, no. 2, pp. 297–309, Nov. 2024, doi: https://doi.org/10.18860/ca.v9i2.29124
D. Desmonda, T. Tursina, and M. A. Irwansyah, “PREDIKSI BESARAN CURAH HUJAN MENGGUNAKAN METODE FUZZY TIME SERIES,” Jurnal Sistem dan Teknologi Informasi (JUSTIN), vol. 6, no. 4, p. 141, Oct. 2018, doi: https://doi.org/10.26418/justin.v6i4.27036
E. Ardiyani, S. Nurdiati, A. Sopaheluwakan, P. Septiawan, and M. K. Najib, “PROBABILISTIC HOTSPOT PREDICTION MODEL BASED ON BAYESIAN INFERENCE USING PRECIPITATION, RELATIVE DRY SPELLS, ENSO AND IOD,” Atmosphere (Basel), vol. 14, no. 2, p. 286, Jan. 2023, doi: https://doi.org/10.3390/atmos14020286
L. Li, “A ROBUST DEEP LEARNING APPROACH FOR SPATIOTEMPORAL ESTIMATION OF SATELLITE AOD AND PM2.5,” Remote Sens (Basel), vol. 12, no. 2, p. 264, Jan. 2020, doi: https://doi.org/10.3390/rs12020264
X. Yang, R. Cui, C. Tian, S. Hu, J. Jiang, and P. Xu, “LINEAR SPLINE AND CNN-LSTM FOR MISSING VALUES IMPUTATION OF BEIDOU SATELLITE RADIATION DOSE DATA,” Chinese Journal of Space Science, vol. 42, no. 1, p. 163, 2022, doi: https://doi.org/10.11728/cjss2022.01.201116100
M. K. Najib and S. Nurdiati, “KOREKSI BIAS STATISTIK PADA DATA PREDIKSI SUHU PERMUKAAN AIR LAUT DI WILAYAH INDIAN OCEAN DIPOLE BARAT DAN TIMUR,” Jambura Geoscience Review, vol. 3, no. 1, pp. 9–17, Jan. 2021, doi: https://doi.org/10.34312/jgeosrev.v3i1.8259
A. Gelman and J. Hill, DATA ANALYSIS USING REGRESSION AND MULTILEVEL/HIERARCHICAL MODELS. Cambridge University Press, 2006. doi: https://doi.org/10.1017/CBO9780511790942
A. Wangwongchai, M. Waqas, P. Dechpichai, P. T. Hlaing, S. Ahmad, and U. W. Humphries, “IMPUTATION OF MISSING DAILY RAINFALL DATA; A COMPARISON BETWEEN ARTIFICIAL INTELLIGENCE AND STATISTICAL TECHNIQUES,” MethodsX, vol. 11, p. 102459, Dec. 2023, doi: https://doi.org/10.1016/j.mex.2023.102459
J. M. Jerez et al., “MISSING DATA IMPUTATION USING STATISTICAL AND MACHINE LEARNING METHODS IN A REAL BREAST CANCER PROBLEM,” Artif Intell Med, vol. 50, no. 2, pp. 105–115, Oct. 2010, doi: https://doi.org/10.1016/j.artmed.2010.05.002
Y. Lops, A. Pouyaei, Y. Choi, J. Jung, A. K. Salman, and A. Sayeed, “APPLICATION OF A PARTIAL CONVOLUTIONAL NEURAL NETWORK FOR ESTIMATING GEOSTATIONARY AEROSOL OPTICAL DEPTH DATA,” Geophys Res Lett, vol. 48, no. 15, Aug. 2021, doi: https://doi.org/10.1029/2021GL093096
Q. Zhang, Q. Yuan, C. Zeng, X. Li, and Y. Wei, “MISSING DATA RECONSTRUCTION IN REMOTE SENSING IMAGE WITH A UNIFIED SPATIAL–TEMPORAL–SPECTRAL DEEP CONVOLUTIONAL NEURAL NETWORK,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 8, pp. 4274–4288, Aug. 2018, doi: https://doi.org/10.1109/TGRS.2018.2810208
L. Sriwahyuni, S. Nurdiati, E. H. Nugrahani, and M. K. Najib, “PERFORMANCE OF MACHINE LEARNING FOR IMPUTING MISSING DAILY RAINFALL DATA IN EAST JAVA UNDER MULTIPLE SATELLITE DATA MODELS,” Geographia Technica, vol. 20, no. 1/2025, pp. 346–368, Mar. 2025, doi: https://doi.org/10.21163/GT_2025.201.23
T. C. H. Lux, L. T. Watson, T. H. Chang, Y. Hong, and K. Cameron, “INTERPOLATION OF SPARSE HIGH-DIMENSIONAL DATA,” Numer Algorithms, vol. 88, no. 1, pp. 281–313, Sep. 2021, doi: https://doi.org/10.1007/s11075-020-01040-2
T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “END-TO-END TEXT RECOGNITION WITH CONVOLUTIONAL NEURAL NETWORKS.”
Z. Chen and Y. Li, “FDSPC: FAST AND DIRECT SMOOTH PATH PLANNING VIA CONTINUOUS CURVATURE INTEGRATION,” May 2024.
S. Moghtadernejad, Y. Jin, and B. T. Adey, “ESTIMATING THE VALUES OF MISSING DATA RELATED TO INFRASTRUCTURE CONDITION STATES USING THEIR SPATIAL CORRELATION,” Journal of Infrastructure Systems, vol. 29, no. 1, Mar. 2023, doi: https://doi.org/10.1061/(ASCE)IS.1943-555X.0000726
M. N. Arefin and A. K. M. Masum, “A PROBABILISTIC APPROACH FOR MISSING DATA IMPUTATION,” Complexity, vol. 2024, pp. 1–15, Jan. 2024, doi: https://doi.org/10.1155/2024/4737963
S. Nurdiati, M. K. Najib, F. Bukhari, R. Revina, and F. N. Salsabila, “PERFORMANCE COMPARISON OF GRADIENT-BASED CONVOLUTIONAL NEURAL NETWORK OPTIMIZERS FOR FACIAL EXPRESSION RECOGNITION,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 3, pp. 927–938, Sep. 2022, doi: https://doi.org/10.30598/barekengvol16iss3pp927-938
D. M. Hawkins, “THE PROBLEM OF OVERFITTING,” J Chem Inf Comput Sci, vol. 44, no. 1, pp. 1–12, Jan. 2004, doi: https://doi.org/10.1021/ci0342472
K. Fukushima, “Neocognitron: A SELF-ORGANIZING NEURAL NETWORK MODEL FOR A MECHANISM OF PATTERN RECOGNITION UNAFFECTED BY SHIFT IN POSITION,” Biol Cybern, vol. 36, no. 4, pp. 193–202, Apr. 1980, doi: https://doi.org/10.1007/BF0034425
Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A SURVEY OF CONVOLUTIONAL NEURAL NETWORKS: ANALYSIS, APPLICATIONS, AND PROSPECTS,” IEEE Trans Neural Netw Learn Syst, vol. 33, no. 12, pp. 6999–7019, Dec. 2022, doi: https://doi.org/10.1109/TNNLS.2021.3084827
V. Nair and G. E. Hinton, “RECTIFIED LINEAR UNITS IMPROVE RESTRICTED BOLTZMANN MACHINES.”
H. Junninen, H. Niska, K. Tuppurainen, J. Ruuskanen, and M. Kolehmainen, “METHODS FOR IMPUTATION OF MISSING VALUES IN AIR QUALITY DATA SETS,” Atmos Environ, vol. 38, no. 18, pp. 2895–2907, Jun. 2004, doi: https://doi.org/10.1016/j.atmosenv.2004.02.026
D. P. Kingma and J. Ba, “ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION,” Dec. 2014.
T. Dozat, “WORKSHOP TRACK-ICLR 2016 INCORPORATING NESTEROV MOMENTUM INTO ADAM.”
I. Loshchilov and F. Hutter, “SGDR: STOCHASTIC GRADIENT DESCENT WITH WARM RESTARTS,” Aug. 2016.
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998, doi: https://doi.org/10.1109/5.726791
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “IMAGENET CLASSIFICATION WITH DEEP CONVOLUTIONAL NEURAL NETWORKS,” Commun ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi: https://doi.org/10.1145/3065386
S. Park and N. Kwak, “ANALYSIS ON THE DROPOUT EFFECT IN CONVOLUTIONAL NEURAL NETWORKS,” 2017, pp. 189–204. doi: https://doi.org/10.1007/978-3-319-54184-6_12
Copyright (c) 2025 Lilis Sriwahyuni, Sri Nurdiati, Endar Hasafah Nugrahani, Ihwan Sukmana, Mohamad Khoirun Najib

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.