SOME CHEMICAL TOPOLOGICAL INDICES FOR THE COPRIME GRAPH OF THE INTEGERS MODULO GROUP
Abstract
This paper delves into the exploration of the coprime graph of a finite group G, a graph with vertices representing all group elements. Vertices x and y are considered adjacent in ΓG if their orders are relatively prime. Specifically, our focus lies in determining essential topological indices: the first Zagreb index, the second Zagreb index, and the Wiener index of the coprime graph associated with the group of integers modulo n. The groups under consideration in this study are those of integers modulo n, where n takes the form of prime power and multiplication of two prime powers, with p and q representing distinct prime numbers and r and s representing natural numbers. This investigation aims to provide a comprehensive understanding of the structural and numerical properties of the coprime graph within the context of finite groups, shedding light on the intricate relationships between group elements and their algebraic properties.
Downloads
References
R. Munir, MATEMATIKA DISKRIT (Revisi Empat), 4th ed. Bandung: Institut Teknologi Bandung, 2010.
G. Chartrand and P. Zhang, A FIRST COURSE IN GRAPH THEORY. Dover Publications, 2012.
S. H. P. Ningrum, A. M. Siboro, S. T. Lestari, I. G. A. W. Wardhana, and Z. Y. Awanis, “ABSTRAKSI CHEMICAL TOPOLOGICAL GRAPH (CTG) MELALUI INDEKS TOPOLOGIS GRAF ALJABAR,” in Prosiding Saintek 6, 2024, pp. 92–100.doi: https://doi.org/10.29303/saintek.v6i1.923
G. Chartrand and Z. Ping, CHROMATIC GRAPH THEORY. Chapman & Hall/CRC, 2009.doi: https://doi.org/10.1201/9781584888017
D. P. Malik, M. N. Husni, I. G. A. W. Wardhana, and G. Semil @ Ismail, “THE CHEMICAL TOPOLOGICAL GRAPH ASSOCIATED WITH THE NILPOTENT GRAPH OF A MODULO RING OF PRIME POWER ORDER,” Journal of Fundamental Mathematics and Applications (JFMA), vol. 7, no. 1, pp. 1–9, 2024, doi: https://doi.org/10.14710/jfma.v0i0.20269.
G. Y. Karang, I. G. A. W. Wardhana, N. I. Alimon, and N. H. Sarmin, “ENERGY AND DEGREE SUM ENERGY OF NON-COPRIME GRAPHS ON DIHEDRAL GROUPS,” Journal of the Indonesian Mathematical Society, vol. 31, no. 01, pp. 1900–1900, 2025.doi: https://doi.org/10.22342/jims.v31i1.1900
L. R. W. Putra, J. R. Albaracin, and I. G. A. W. Wardhana, “ON SOMBOR ENERGY OF THE NILPOTENT GRAPH OF THE RING OF INTEGERS MODULO Ε,” Journal of the Indonesian Mathematical Society, vol. 31, no. 3, pp. 1856–1856, 2025.doi: https://doi.org/10.22342/jims.v31i3.1856
G. Y. Karang, I. G. A. W. Wardhana, and M. Angamuthu, “ENERGY OF NON-COPRIME GRAPH ON MODULO GROUP,” BAREKENG: J. Math. & App, vol. 19, no. 4, pp. 2937–2952, 2025, doi: 10.30598/barekengvol19no4pp2937-2952.doi: https://doi.org/10.30598/barekengvol19iss4pp2937-2952
G. Semil Ismail, N. H. Sarmin, N. I. Alimon, and F. Maulana, “THE FIRST ZAGREB INDEX OF THE ZERO DIVISOR GRAPH FOR THE RING OF INTEGERS MODULO POWER OF PRIMES,” Malaysian Journal of Fundamental and Applied Sciences, vol. 19, no. 5, pp. 892–900, Sep. 2023, doi: https://doi.org/10.11113/mjfas.v19n5.2980.
R. García-Domenech, J. Gálvez, J. V. de Julián-Ortiz, and L. Pogliani, “SOME NEW TRENDS IN CHEMICAL GRAPH THEORY,” Mar. 2008. doi: https://doi.org/10.1021/cr0780006.
N. Nurhabibah, A. G. Syarifudin, and I. G. A. W. Wardhana, “SOME RESULTS OF THE COPRIME GRAPH OF A GENERALIZED QUATERNION GROUP Q_4n,” InPrime: Indonesian Journal of Pure and Applied Mathematics, vol. 3, no. 1, pp. 29–33, 2021, doi: https://doi.org/10.15408/inprime.v3i1.19670.
M. Afdhaluzzikri, I. G. A. W. W. Wardhana, F. Maulana, and H. R. Biswas, “THE NON-COPRIME GRAPHS OF UPPER UNITRIANGULAR MATRIX GROUPS OVER THE RING OF INTEGER MODULO WITH PRIME ORDER AND THEIR TOPOLOGICAL INDICES,” BAREKENG: J. Math. & App, vol. 19, no. 1, pp. 547–0556, 2025, doi: https://doi.org/10.30598/barekengvol19iss1pp547-556.
N. Nurhabibah, I. G. A. W. Wardhana, and N. W. Switrayni, “NUMERICAL INVARIANTS OF COPRIME GRAPH 0F A GENERALIZED QUATERNION GROUP,” Journal of the Indonesian Mathematical Society, vol. 29, no. 01, pp. 36–44, 2023.doi: https://doi.org/10.22342/jims.29.1.1245.36-44
S. T. Lestari, P. K. Dewi, I. G. A. W. Wardhana, and I. N. Suparta, “ALGEBRAIC STRUCTURES AND COMBINATORIAL PROPERTIES OF UNIT GRAPHS IN RINGS OF INTEGER MODULO WITH SPECIFIC ORDERS,” EIGEN MATHEMATICS JOURNAL, vol. 7, no. 2, pp. 89–92, Sep. 2024, doi: https://doi.org/10.29303/emj.v7i2.235.
D. P. Malik et al., “GRAF NILPOTEN DARI GELANGGANG BILANGAN BULAT MODULO BERORDE PANGKAT PRIMA (A NOTE ON NILPOTENT GRAPH OF RING INTEGER MODULO WITH ORDER PRIME POWER),” JMPM: Jurnal Matematika dan Pendidikan Matematika, vol. 8, no. 1, pp. 28–33, 2023, doi: ttps://doi.org/10.26594/jmpm.v8i1.2920.
S. T. Lestari, J. R. Albaracin, and I. G. A. W. Wardhana, “CERTAIN INDEXES OF UNIT GRAPH IN INTEGER MODULO RINGS WITH SPECIFIC ORDERS,” BAREKENG: J. Math. & App, vol. 19, no. 4, pp. 2455–2466, 2025, doi: https://doi.org/10.30598/barekengvol19iss4pp2455-2466.
S. Zahidah, D. Mifta Mahanani, and K. L. Oktaviana, “CONNECTIVITY INDICES OF COPRIME GRAPH OF GENERALIZED QUATERNION GROUP,” Journal of the Indonesian Mathematical Society, vol. 27, no. 03, pp. 285–296, 2021.doi: https://doi.org/10.22342/jims.27.3.1043.285-296
N. H. Sarmin, N. I. Alimon, and A. Erfanian, “TOPOLOGICAL INDICES OF THE NON-COMMUTING GRAPH FOR GENERALISED QUATERNION GROUP,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 43, no. 5, pp. 3361–3367, Sep. 2020, doi: https://doi.org/10.1007/s40840-019-00872-z.
M. N. Husni, H. Syafitri, A. M. Siboro, A. G. Syarifudin, Q. Aini, and I. G. A. W. Wardhana, “THE HARMONIC INDEX AND THE GUTMAN INDEX OF COPRIME GRAPH OF INTEGER GROUP MODULO WITH ORDER OF PRIME POWER,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 3, pp. 961–966, Sep. 2022, doi: https://doi.org/10.30598/barekengvol16iss3pp961-966.
Nurhabibah, D. P. Malik, H. Syafitri, and I. G. A. W. Wardhana, “SOME RESULTS OF THE NON-COPRIME GRAPH OF A GENERALIZED QUATERNION GROUP FOR SOME N,” AIP Conf Proc, vol. 2641, no. December 2022, p. 020001, 2022, doi: https://doi.org/10.1063/5.0114975.
B. Davvaz, A FIRST COURSE IN GROUP THEORY. Springer Singapore, 2021. doi: https://doi.org/10.1007/978-981-16-6365-9.
A. G. Syarifudin, Nurhabibah, D. P. Malik, and I. G. A. W. dan Wardhana, “SOME CHARACTERIZATSION OF COPRIME GRAPH OF DIHEDRAL GROUP D2N,” J Phys Conf Ser, vol. 1722, no. 1, 2021, doi: https://doi.org/10.1088/1742-6596/1722/1/012051
K. C. Das, K. Xu, and J. Nam, “ZAGREB INDICES OF GRAPHS,” Frontiers of Mathematics in China, vol. 10, no. 3, pp. 567–582, Jun. 2015, doi: https://doi.org/10.1007/s11464-015-0431-9.
N. I. Alimon, N. H. Sarmin, and A. Erfanian, “THE SZEGED AND WIENER INDICES FOR COPRIME GRAPH OF DIHEDRAL GROUPS,” in AIP Conference Proceedings, American Institute of Physics Inc., Oct. 2020. doi: https://doi.org/10.1063/5.0018270.
R. Juliana, M. Masriani, I. G. A. W. Wardhana, N. W. Switrayni, and I. Irwansyah, “COPRIME GRAPH OF INTEGERS MODULO N GROUP AND ITS SUBGROUPS,” Journal of Fundamental Mathematics and Applications (JFMA), vol. 3, no. 1, pp. 15–18, 2020, doi: https://doi.org/10.14710/jfma.v3i1.7412.
Copyright (c) 2026 Gustina Elfiyanti, Mutia Nofita Sari, I Gede Adhitya Wisnu Wardhana, Ade Candra, Ghazali Semil Ismail

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.




1.gif)


