INTEGRATED STATISTICAL MODELLING OF IRON EXCEEDANCE RISK: A MONTE CARLO, LOGISTIC REGRESSION, RANDOM FOREST, AND SOBOL ANALYSIS APPROACH
Abstract
The quality of water resources in the Inaouen watershed, northern Morocco, is increasingly threatened by metal contamination, particularly iron (Fe). This study implements an integrated statistical framework to assess the risk of exceeding regulatory iron concentration thresholds. After preprocessing local physico-chemical data, a binary indicator variable was constructed to flag exceedances of the critical 30 µg/L threshold. Iron concentrations were modeled using log-normal and Weibull distributions, with a Monte Carlo simulation (n = 10,000) based on the log-normal law estimating exceedance probabilities across multiple thresholds (30, 50, 100 µg/L), revealing an 18% risk at 30 µg/L. Predictive modeling via logistic regression and random forest analysis identified calcium (Ca) as the dominant driver of iron exceedances, a finding corroborated by Sobol sensitivity analysis (S1 index = 0.74), with bicarbonate (HCO₃⁻) emerging as a secondary factor (S1 = 0.10). These results demonstrate the power of combining distribution fitting, machine learning, and global sensitivity analysis to effectively quantify and interpret iron contamination risks in vulnerable watersheds such as Inaouen. The proposed methodology offers a robust decision-support tool for sustainable water resource management and public health protection.
Downloads
References
N.-E.-J. Preonty, M. N. Hassan, A. H. M. S. Reza, M. I. A. Rasel, M. M. A. Mahim, and M. F. T. Jannat, “POLLUTION AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN SURFACE WATER OF THE INDUSTRIAL REGION IN GAZIPUR, BANGLADESH,” Environ. Chem. Ecotoxicol., vol. 7, pp. 527–538, 2025. doi: https://doi.org/10.1016/j.enceco.2025.02.014
N. Abdo, A. Alhamid, M. Abu-Dalo, A. Graboski-Bauer, and M. Al Harahsheh, “POTENTIAL HEALTH RISK ASSESSMENT OF MIXTURES OF HEAVY METALS IN DRINKING WATER,” Groundw. Sustain. Dev., vol. 25, p. 101147, May 2024. doi: https://doi.org/10.1016/j.gsd.2024.101147
R. El Chaal, K. Hamdane, and M. O. Aboutafail, “APPLICATION OF MULTIDIMENSIONAL STATISTICAL METHODS TO THE HYDROCHEMICAL STUDY WITH R SOFTWARE,” Math. Model. Eng. Probl., vol. 9, no. 6, pp. 1669–1678, Dec. 2022. doi: https://doi.org/10.18280/mmep.090628
R. EL CHAAL and M. O. Aboutafail, “STATISTICAL MODELLING BY TOPOLOGICAL MAPS OF KOHONEN FOR CLASSIFICATION OF THE PHYSICOCHEMICAL QUALITY OF SURFACE WATERS OF THE INAOUEN WATERSHED UNDER MATLAB,” J. Niger. Soc. Phys. Sci., vol. 4, no. 2 SE-Original Research, pp. 223–230, May 2022. doi: https://doi.org/10.46481/jnsps.2022.608
R. El Chaal and M. O. Aboutafail, “A COMPARATIVE STUDY OF BACK-PROPAGATION ALGORITHMS: LEVENBERG-MARQUART AND BFGS FOR THE FORMATION OF MULTILAYER NEURAL NETWORKS FOR ESTIMATION OF FLUORIDE,” Commun. Math. Biol. Neurosci., vol. 2022, pp. 558–565, 2022. doi: https://doi.org/10.28919/cmbn/7355
R. El Chaal and M. O. Aboutafail, “COMPARING ARTIFICIAL NEURAL NETWORKS WITH MULTIPLE LINEAR REGRESSION FOR FORECASTING HEAVY METAL CONTENT,” Acadlore Trans. Geosci., vol. 1, no. 1, pp. 2–11, Nov. 2022. doi: https://doi.org/10.56578/atg010102
R. El Chaal and M. O. Aboutafail, “APPLICATION NEURAL NETWORK APPROACH FOR THE ESTIMATION OF HEAVY METAL CONCENTRATIONS IN THE INAOUEN WATERSHED,” J. Environ. Eng. Landsc. Manag., vol. 30, no. 4, pp. 515–526, Dec. 2022. doi: https://doi.org/10.3846/jeelm.2022.18059
S. Singh, K. S. Parmar, and J. Kumar, “DEVELOPMENT OF MULTI-FORECASTING MODEL USING MONTE CARLO SIMULATION COUPLED WITH WAVELET DENOISING-ARIMA MODEl,” Math. Comput. Simul., vol. 230, pp. 517–540, Apr. 2025. doi: https://doi.org/10.1016/j.matcom.2024.10.040
M. A. Meraou, M. Z. Raqab, D. Kundu, and F. A. Alqallaf, “INFERENCE FOR COMPOUND TRUNCATED POISSON LOG-NORMAL MODEL WITH APPLICATION TO MAXIMUM PRECIPITATION DATA,” Commun. Stat. - Simul. Comput., pp. 1–22, Mar. 2024. doi: https://doi.org/10.1080/03610918.2024.2328168
N. Akhtar, M. Abid, M. W. Amir, M. Riaz, and H. Z. Nazir, “ON MONITORING THE STANDARD DEVIATION OF LOG‐NORMAL PROCESS,” Qual. Reliab. Eng. Int., vol. 40, no. 5, pp. 2509–2526, Jul. 2024. doi: https://doi.org/10.1002/qre.3523
C. Dang, M. A. Valdebenito, P. Wei, J. Song, and M. Beer, “BAYESIAN ACTIVE LEARNING LINE SAMPLING WITH LOG-NORMAL PROCESS FOR RARE-EVENT PROBABILITY ESTIMATION,” Reliab. Eng. Syst. Saf., vol. 246, p. 110053, Jun. 2024. doi: https://doi.org/10.1016/j.ress.2024.110053
R. Proshad et al., “AN OVERVIEW OF METAL(OID) POLLUTION, SOURCES, AND PROBABILISTIC HEALTH RISK EVALUATIONS BASED ON A MONTE CARLO SIMULATION OF SURFACE RIVER WATER IN A DEVELOPING COUNTRY,” Water, vol. 17, no. 5, p. 630, Feb. 2025. doi: https://doi.org/10.3390/w17050630
Y. Qi, B. Jiang, W. Lei, Y. Zhang, and W. Yu, “RELIABILITY ANALYSIS OF NORMAL, LOGNORMAL, AND WEIBULL DISTRIBUTIONS ON MECHANICAL BEHAVIOR OF WOOD SCRIMBER,” Forests, vol. 15, no. 9, p. 1674, Sep. 2024. doi: https://doi.org/10.3390/f15091674
V. Dyptan, P. Yablonsky, O. Avramenko, V. Klymchuk, P. Openko, and V. Polishchuk, “RELIABILITY ASSESSMENT OF HIGHLY RELIABLE SAMPLES USING THE TOLERANCE LIMITS AND THE WEIBULL’S LAW,” in International Workshop on Advances in Civil Aviation Systems Development, Springer, 2024, pp. 310–321. doi: https://doi.org/10.1007/978-3-031-60196-5_23
J. Xu, M. Zheng, S. Wu, X. Wang, and Z. Ou, “STUDY ON THE WEIBULL DISTRIBUTION FUNCTION-BASED STOCHASTIC DAMAGE EVOLUTION LAW FOR UNIAXIAL COMPRESSION IN HIGH-PERFORMANCE CONCRETE WITH FULL AEOLIAN SAND,” Constr. Build. Mater., vol. 449, p. 138461, Oct. 2024. doi: https://doi.org/10.1016/j.conbuildmat.2024.138461
A. B. Ngnassi Djami, W. Nzie, and S. Y. Doka, “PU,” Life Cycle Reliab. Saf. Eng., vol. 13, no. 4, pp. 449–454, Dec. 2024. doi: https://doi.org/10.1007/s41872-024-00271-9
A. Zeimbekakis, E. D. Schifano, and J. Yan, “ON MISUSES OF THE KOLMOGOROV–SMIRNOV TEST FOR ONE-SAMPLE GOODNESS-OF-FIT,” Am. Stat., vol. 78, no. 4, pp. 481–487, Oct. 2024. doi: https://doi.org/10.1080/00031305.2024.2356095
L. Campanelli, “TUNING UP THE KOLMOGOROV–SMIRNOV TEST FOR TESTING BENFORD’S LAW,” Commun. Stat. - Theory Methods, vol. 54, no. 3, pp. 739–746, Feb. 2025. doi: https://doi.org/10.1080/03610926.2024.2318608
W. Zheng, H. Zhu, K. Lance Gould, and D. Lai, “COMPARING HEART PET SCANS: AN ADJUSTMENT OF KOLMOGOROV-SMIRNOV TEST UNDER SPATIAL AUTOCORRELATION,” J. Appl. Stat., vol. 52, no. 1, pp. 253–269, Jan. 2025. doi: https://doi.org/10.1080/02664763.2024.2366300
Y. Zhang, S. Wang, X. Ke, and H. Ye, “A NEW KOLMOGOROV-SMIRNOV TEST BASED ON REPRESENTATIVE POINTS IN THE EXPONENTIAL DISTRIBUTION FAMILY,” J. Stat. Comput. Simul., vol. 94, no. 15, pp. 3391–3408, Oct. 2024. doi: https://doi.org/10.1080/00949655.2024.2385687
V. Sharma and R. Biswas, “STATISTICAL ANALYSIS OF SEISMIC B-VALUE USING NON-PARAMETRIC KOLMOGOROV–SMIRNOV TEST AND PROBABILISTIC SEISMIC HAZARD PARAMETRIZATION FOR NEPAL AND ITS SURROUNDING REGIONS,” Nat. Hazards, vol. 120, no. 8, pp. 7499–7526, Jun. 2024. doi: https://doi.org/10.1007/s11069-024-06531-2
D. Sarrut et al., “THE OPENGATE ECOSYSTEM FOR MONTE CARLO SIMULATION IN MEDICAL PHYSICS,” Phys. Med. Biol., vol. 67, no. 18, p. 184001, Sep. 2022. doi: https://doi.org/10.1088/1361-6560/ac8c83
M. Pineda and M. Stamatakis, “KINETIC MONTE CARLO SIMULATIONS FOR HETEROGENEOUS CATALYSIS: FUNDAMENTALS, CURRENT STATUS, AND CHALLENGES,” J. Chem. Phys., vol. 156, no. 12, Mar. 2022. doi: https://doi.org/10.1063/5.0083251
R. B. Silalahi, D. C. Lesmana, and R. Budiarti, “DETERMINING THE VALUE OF DOUBLE BARRIER OPTION USING STANDARD MONTE CARLO, ANTITHETIC VARIATE, AND CONTROL VARIATE METHODS,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 2, pp. 1017–1026, Jun. 2023. doi: https://doi.org/10.30598/barekengvol17iss2pp1017-1026
D. Jang, J. Kim, D. Kim, W.-B. Han, and S. Kang, “TECHNO-ECONOMIC ANALYSIS AND MONTE CARLO SIMULATION OF GREEN HYDROGEN PRODUCTION TECHNOLOGY THROUGH VARIOUS WATER ELECTROLYSIS TECHNOLOGIES,” Energy Convers. Manag., vol. 258, p. 115499, Apr. 2022. doi: https://doi.org/10.1016/j.enconman.2022.115499
K. N. A. Dewi, D. C. Lesmana, and R. Budiarti, “IMPLEMENTATION OF MONTE CARLO MOMENT MATCHING METHOD FOR PRICING LOOKBACK FLOATING STRIKE OPTION,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 4, pp. 1365–1372, Dec. 2022. doi: https://doi.org/10.30598/barekengvol16iss4pp1365-1372
E. T. Yuniarsih, M. Salam, M. H. Jamil, and A. Nixia Tenriawaru, “DETERMINANTS DETERMINING THE ADOPTION OF TECHNOLOGICAL INNOVATION OF URBAN FARMING: EMPLOYING BINARY LOGISTIC REGRESSION MODEL IN EXAMINING ROGERS’ FRAMEWORK,” J. Open Innov. Technol. Mark. Complex., vol. 10, no. 2, p. 100307, Jun. 2024. doi: https://doi.org/10.1016/j.joitmc.2024.100307
B. Kolukisa, B. K. Dedeturk, H. Hacilar, and V. C. Gungor, “AN EFFICIENT NETWORK INTRUSION DETECTION APPROACH BASED ON LOGISTIC REGRESSION MODEL AND PARALLEL ARTIFICIAL BEE COLONY ALGORITHM,” Comput. Stand. Interfaces, vol. 89, p. 103808, Apr. 2024. doi: https://doi.org/10.1016/j.csi.2023.103808
D. Jayaprakash and C. S. Kanimozhiselvi, “MULTINOMIAL LOGISTIC REGRESSION METHOD FOR EARLY DETECTION OF AUTISM SPECTRUM DISORDERS,” Meas. Sensors, vol. 33, p. 101125, Jun. 2024. doi: https://doi.org/10.1016/j.measen.2024.101125
A. Setiawan, F. Setivani, and T. Mahatma, “PERFORMANCE COMPARISON OF DECISION TREE AND LOGISTIC REGRESSION METHODS FOR CLASSIFICATION OF SNP GENETIC DATA,” BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 1, pp. 0403–0412, Mar. 2024. doi: https://doi.org/10.30598/barekengvol18iss1pp0403-0412
M. Howell‐Moroney, “INCONVENIENT TRUTHS ABOUT LOGISTIC REGRESSION AND THE REMEDY OF MARGINAL EFFECTS,” Public Adm. Rev., vol. 84, no. 6, pp. 1218–1236, Nov. 2024. doi: https://doi.org/10.1111/puar.13786
A. Purwanto, M. A. Suprayogi, E. Setiawan, J. F. R. B. Loly, G. A. Rahman, and A. Kurnia, “MULTINOMIAL LOGISTIC REGRESSION MODEL USING MAXIMUM LIKELIHOOD APPROACH AND BAYES METHOD ON INDONESIA’S ECONOMIC GROWTH PRE TO POST COVID-19 PANDEMIC,” BAREKENG J. Ilmu Mat. dan Terap., vol. 19, no. 1, pp. 51–62, Jan. 2025. doi: https://doi.org/10.30598/barekengvol19iss1pp51-62
Z. Rahmatinejad et al., “A COMPARATIVE STUDY OF EXPLAINABLE ENSEMBLE LEARNING AND LOGISTIC REGRESSION FOR PREDICTING IN-HOSPITAL MORTALITY IN THE EMERGENCY DEPARTMENT,” Sci. Rep., vol. 14, no. 1, p. 3406, Feb. 2024. doi: https://doi.org/10.1038/s41598-024-54038-4
L. H. Y. Arini, S. Solimun, A. Efendi, and A. A. R. Fernandes, “ENSEMBLE BAGGING WITH ORDINAL LOGISTIC REGRESSION TO CLASSIFY TODDLER NUTRITIONAL STATUS,” BAREKENG J. Ilmu Mat. dan Terap., vol. 19, no. 1, pp. 1–12, Jan. 2025. doi: https://doi.org/10.30598/barekengvol19iss1pp1-12
P. D. F. Isles, “A RANDOM FOREST APPROACH TO IMPROVE ESTIMATES OF TRIBUTARY NUTRIENT LOADING,” Water Res., vol. 248, p. 120876, Jan. 2024. doi: https://doi.org/10.1016/j.watres.2023.120876
S. Qaderi, A. Maghsoudi, M. Yousefi, and A. B. Pour, “TRANSLATION OF MINERAL SYSTEM COMPONENTS INTO TIME STEP-BASED ORE-FORMING EVENTS AND EVIDENCE MAPS FOR MINERAL EXPLORATION: INTELLIGENT MINERAL PROSPECTIVITY MAPPING THROUGH ADAPTATION OF RECURRENT NEURAL NETWORKS AND RANDOM FOREST ALGORITHM,” Ore Geol. Rev., vol. 179, p. 106537, Apr. 2025. doi: https://doi.org/10.1016/j.oregeorev.2025.106537
Z. Sun, G. Wang, P. Li, H. Wang, M. Zhang, and X. Liang, “AN IMPROVED RANDOM FOREST BASED ON THE CLASSIFICATION ACCURACY AND CORRELATION MEASUREMENT OF DECISION TREES,” Expert Syst. Appl., vol. 237, p. 121549, Mar. 2024. doi: https://doi.org/10.1016/j.eswa.2023.121549
X. Zhang et al., “IMPROVED RANDOM FOREST ALGORITHMS FOR INCREASING THE ACCURACY OF FOREST ABOVEGROUND BIOMASS ESTIMATION USING SENTINEL-2 IMAGERY,” Ecol. Indic., vol. 159, p. 111752, Feb. 2024. doi: https://doi.org/10.1016/j.ecolind.2024.111752
H. Wang, F. Wang, H. Yang, K. Staszewska, and B. Jeremić, “SOBOL’ SENSITIVITY ANALYSIS OF A 1D STOCHASTIC ELASTO-PLASTIC SEISMIC WAVE PROPAGATION,” Soil Dyn. Earthq. Eng., vol. 191, p. 109283, Apr. 2025. doi: https://doi.org/10.1016/j.soildyn.2025.109283
L. Lusardi et al., “METHODS FOR COMPARING THEORETICAL MODELS PARAMETERIZED WITH FIELD DATA USING BIOLOGICAL CRITERIA AND SOBOL ANALYSIS,” Ecol. Modell., vol. 493, p. 110728, Jul. 2024. doi: https://doi.org/10.1016/j.ecolmodel.2024.110728
Z. Wang et al., “METABOLISM-BASED NONTARGET-SITE MECHANISM IS THE MAIN CAUSE OF A FOUR-WAY RESISTANCE IN SHORTAWN FOXTAIL ( ALOPECURUS AEQUALIS SOBOL.),” J. Agric. Food Chem., vol. 72, no. 21, pp. 12014–12028, May 2024. doi: https://doi.org/10.1021/acs.jafc.4c01849
F. Anderl and M. Mayle, “SENSITIVITY ANALYSIS OF PIEZOELECTRIC MATERIAL PARAMETERS USING SOBOL INDICES,” tm - Tech. Mess., Apr. 2025. doi: https://doi.org/10.1515/teme-2024-0116
L. Chen, Z. Xu, D. Huang, and Z. Chen, “AN IMPROVED SOBOL SENSITIVITY ANALYSIS METHOD,” J. Phys. Conf. Ser., vol. 2747, no. 1, p. 012025, May 2024. doi: https://doi.org/10.1088/1742-6596/2747/1/012025
Copyright (c) 2025 Rachid El Chaal, Hamid Dalhi, Otmane Darbal, Moulay Othman Aboutafail

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this Journal agree to the following terms:
- Author retain copyright and grant the journal right of first publication with the work simultaneously licensed under a creative commons attribution license that allow others to share the work within an acknowledgement of the work’s authorship and initial publication of this journal.
- Authors are able to enter into separate, additional contractual arrangement for the non-exclusive distribution of the journal’s published version of the work (e.g. acknowledgement of its initial publication in this journal).
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published works.




1.gif)


