HYBRID VECTOR AUTOREGRESSIVE AND LONG SHORT TERM MEMORY MODEL FOR PREDICTING ECONOMIC GROWTH INDICATORS IN INDONESIA: A COMPARISON OF ADAM, NADAM, AND RMSPROP OPTIMIZATION METHODS

  • Ariska Fitriyana Ningrum Departement of Data Science, Faculty of Science and Agriculture Technology, Universitas Muhammadiyah Semarang, Indonesia https://orcid.org/0009-0006-9776-0285
  • Mulil Khaira Departement of Informatics and Computer Engineering Education, Faculty of Engineering, Universitas Negeri Semarang, Indonesia https://orcid.org/0009-0009-6307-5433
Keywords: Economic growth, LSTM, Optimization algorithm, Time series, Vector autoregressive

Abstract

This study aims to compare the performance of three optimization methods—Adam, Nadam, and RMSProp—in forecasting monthly economic indicators of Indonesia, namely the Consumer Price Index (CPI), Inflation, and Gross Domestic Product (GDP), using a hybrid Vector Autoregressive–Long Short-Term Memory (VAR–LSTM) model. The analysis begins with Vector Autoregression (VAR), where VAR(4) is selected as the best model based on the lowest Akaike Information Criterion (AIC) value of 1.075. Significant parameters from the VAR model are then used as input variables for the LSTM to enhance forecasting accuracy. The experimental results show that all three optimization methods generate similar prediction patterns, with forecasted values closely tracking the actual data. Nevertheless, the best optimizer differs across variables: Nadam performs best for CPI with a Root Mean Square Error (RMSE) of 0.4996, Adam yields the best performance for Inflation with an RMSE of 0.676, and RMSProp performs best for GDP with an RMSE of 1.288. Despite these variations, the overall forecasting performance of the three methods is comparable. These findings indicate that the VAR–LSTM approach can effectively capture the dynamic patterns of multiple economic variables and that the choice of optimization method should be aligned with the specific characteristics of the data, considering both accuracy and computational efficiency.

Downloads

Download data is not yet available.

References

R. Kurniawan and S. Managi, "ECONOMIC GROWTH AND SUSTAINABLE DEVELOPMENT IN INDONESIA: AN ASSESSMENT," Bulletin of Indonesian Economic Studies, vol. 54, no. 3, pp. 339-361, 2018. doi: https://doi.org/10.1080/00074918.2018.1450962

A. R. Kira, "THE FACTORS AFFECTING GROSS DOMESTIC PRODUCT (GDP) IN DEVELOPING COUNTRIES: THE CASE OF TANZANIA," European Journal of Business and Management, vol. 5, 2013.

M. M. Ivic, "ECONOMIC GROWTH AND DEVELOPMENT," Journal of process management-new technologies, international, vol. 3, no. 1, pp. 55-62, 2015.

A. Argandoña, "GROSS DOMESTIC PRODUCT (GDP) AND GROSS NATIONAL PRODUCT (GNP)," Encyclopedia of Business Ethics and Society, Forthcoming, p. 8, 2017. doi: http://dx.doi.org/10.56225/finbe.v1i1.83

G. Semieniuk, "INCONSISTENT DEFINITIONS OF GDP: IMPLICATIONS FOR ESTIMATES OF DECOUPLING," Ecological Economics,, vol. 215, p. 108000, 2024. doi: https://doi.org/10.1016/j.ecolecon.2023.108000

D. J.H, "THE ROLE OF GDP IN MEASURING ECONOMIC GROWTH," Journal of Operations Management,, vol. 58, pp. 305-320, 2021.

S. Dal Bianco, C. Amini, and M. Signorelli, "THE IMPACT OF THE GLOBAL FINANCIAL CRISIS AND THE ROLE OF EXTERNAL AND INTERNAL FACTORS IN EMERGING ECONOMIES," Emerging Markets Finance and Trade, vol. 53, no. 2, pp. 229-249, 2017. doi: https://doi.org/10.1080/1540496X.2016.1216840

P. Asare, and R. Barfi, "THE IMPACT OF COVID-19 PANDEMIC ON THE GLOBAL ECONOMY: EMPHASIS ON POVERTY ALLEVIATION AND ECONOMIC GROWTH," Economics, vol. 8, pp. 32-43, 2021. doi: https://doi.org/10.18488/journal.29.2021.81.32.43

"WHY IS GROWTH IN DEVELOPING COUNTRIES SO HARD TO MEASURE," Journal of Economic Perspectives, vol. 35, pp. 215-242, 2021.

F. R. Khan, "INDONESIA'S FISCAL POLICY IN THE MIDST OF RECESSION AND POST-PANDEMIC RECOVERY REVIEWED FROM AN ISLAMIC FISCAL PERSPECTIVE," Jurnal Penelitian Hukum Ekonomi Syariah, vol. 9, pp. 399-418, 2024. doi:https://doi.org/10.24235/jm.v9i2.18880

Badan Pusat Statistik, LAPORAN PEREKONOMIAN INDONESIA, 2023.

A. I. A. Lamah, Yanto, H and Setyadharma, A., "THE IMPACT OF CONSUMER PRICE INDEX, FOREIGN DIRECT INVESTMENT, BANK CREDIT AND LABOUR FORCE ON ECONOMIC GROWTH IN INDONESIA," Business and Economic Analysis Journal, vol. 1, pp. 79-91, 2021. https://doi.org/10.15294/beaj.v1i2.33588

W. S. Fitri and A. Syamsuri, "REVIEW OF LITERATURE: THE IMPACT OF INFLATION ON INDONESIA'S ECONOMIC GROWTH," International Journal of Management knowledge Sharing, vol. 1, pp. 56-62, 2024. doi: https://doi.org/10.62872/sqzkrp37

D. Yuniarti, and D. Rosadi,"INFLATION OF INDONESIA DURING THE COVID-19 PANDEMIC," Journal of Physics: Conference Series, vol. 1821, 2021. doi: https://doi.org/10.1088/1742-6596/1821/1/012039

Badan Pusat Statistik, LAPORAN PEREKONOMIAN INDONESIA 2020, 2020.

L. F. Sari, N. Nawasiah and A. M. Wijaya, "THE EXCHANGE RATE PLAYS A CRUCIAL ROLE IN THE CONSUMER PRICE INDEX AS IT AFFECTS THE INFLATION," Jurnal Riset Akuntansi dan Perpajakan, vol. 11, pp. 251-257, 2024.

Z. Z. Rahmah et al, "MANAJEMEN PENDAPATAN NASIONAL DAN KESEJAHTERAAN DALAM PERSPEKTIF EKONOMI ISLAM: ANALISIS KRITIS," Jurnal Manajemen dan Bisnis Performa, vol. 21, pp. 32-44, 2024. doi: https://doi.org/10.29313/performa.v21i1.3713

M. Melina, et al, "COMPARATIVE ANALYSIS OF TIME SERIES FORECASTING MODELS USING ARIMA AND NEURAL NETWORK AUTOREGRESSION METHODS," BAREKENG: Journal of Mathematics and Its Application, vol. 18, no. 4, pp. 2563-2576, 2024. doi: https://doi.org/10.30598/barekengvol18iss4pp2563-2576

A. Hatemi-J, "FORECASTING PROPERTIES OF A NEW METHOD TO DETERMINE OPTIMAL LAG ORDER IN STABLE AND UNSTABLE VAR MODELS," Applied Economics Letter, vol. 15, pp. 239-243, 2008. doi: https://doi.org/10.1080/13504850500461613

C. Agiakloglou and A. Tsimpanos, "EVALUATING THE PERFORMANCE OF AIC AND BIC FOR SELECTING SPATIAL ECONOMETRIC MODELS," J. of Spatial Econometrics, vol. 4, 2022. doi: https://doi.org/10.1007/s43071-022-00030-x

C. Tian, J. Ma, C. Zhang, and P. Zhan,"A DEEP NEURAL NETWORK MODEL FOR SHORT-TERM LOAD FORECAST BASED ON LONG SHORT-TERM MEMORY NETWORK AND CONVOLUTIONAL NEURAL NETWORK," Energies, vol. 11, p. 3493, 2018. doi: https://doi.org/10.3390/en11123493

K. Ijaz et al "A NOVEL TEMPORAL FEATURE SELECTION BASED LSTM MODEL FOR ELECTRICAL SHORT-TERM LOAD FORECASTING," IEEE Access, vol. 10, pp. 82596-82613., 2022. doi: https://doi.org/10.1109/ACCESS.2022.3196476

H. Abbasimehr and R. Paki, "IMPROVING TIME SERIES FORECASTING USING LSTM AND ATTENTION MODELS," Journal of Ambient Intelligence and Humanized Computing, vol. 13, pp. 673-691, 2021. doi: https://doi.org/10.1007/s12652-020-02761-x

M. Sakib and S. Mustajab, "ENHANCED MULTI-VARIATE TIME SERIES PREDICTION THROUGH STATISTICAL-DEEP LEARNING INTEGRATION: THE VAR-STACKED LSTM MODEL," SN Computer Science, vol. 5, 2024. doi: doi: https://doi.org/10.1007/s42979-024-02950-x

X. LI and J. Yuan, "DeppTVAR: DEEP LEARNING FOR A TIME-VARYING VAR MODEL WITH EXTENSION TO INTEGRATED VAR," International Journal of Forecasting, vol. 40, pp. 1123-1133, 2024. doi: https://doi.org/10.1016/j.ijforecast.2023.10.001

F. Wijaya, "PENDEKATAN SPACE TIME AUTOREGRESSIVE (STAR) DENGAN GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) MELALUI METODE AUTOREGRESSIVE (AR) DAN VEKTOR AUTOREGRESSIVE (VAR)," 2015.

J. Brocklebank and A. Daved, SAS FOR FORECASTING TIME SERIES, 2 th Edition ed., New York: John Wiley & Sons, 2003.

D. Gujarati, BASIC ECONOMETRICS, 4 ed., New York: Gary Burke, 2003.

K. Greff , R. K. Srivastava , J. Koutnik, B.R Steunebrink and J. Schmidhuber, "LSTM" A SEARCH SPACE ODYSSEY," IEEE Transactions on Neural Networks and Learning Systems, vol. 28, pp. 2222-2232, 2017. doi: https://doi.org/10.1109/TNNLS.2016.2582924

E.M Dogo, O.J Afolabi, N.I Nwulu, B.Twala and C.O Aigbavboa, "A COMPARATIVE ANALYSIS OF GRADIENT DESCENT-BASED OPTIMIZATION ALGORITHMS ON CONVOLUTIONAL NEURAL NETWORKS," 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), pp. 92-99, 2018. doi: https://doi.org/10.1109/CTEMS.2018.8769211

L. Guan, "AdaPlus: INTEGRATING NESTEROV MOMENTUM AND PRECISE STEPSIZE ADJUSTMENT ON ADAMW BASIS," ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5210-5214, 2024. doi: https://doi.org/10.1109/ICASSP48485.2024.10447337

S. N. Gedela, and P. Bodanki, "MEASURING ACCURACY OF DATASET USING DEEP LEARNING ALGORITHM RMSPROP ALGORITHM," International Journal for Research in Applied Science & Engineering Technology (IJRASET), vol. 9, pp. 99-122, 2021. doi: https://doi.org/10.22214/ijraset.2021.38356

S. Makridakis, S. Wheelwright and V.McGee, METODE APLIKASI PERAMALAN, Jakarta: Erlangga, 1999.

J.B Cromwell, "MULTIVARIATE TEST FOR TIME SERIES MODELS," United State of America: Sge Publication, 1994. https://doi.org/10.4135/9781412985239

F. Wijaya, "PENDEKATAN SPACE TIME AUTOREGRESSIVE (STAR) DENGAN GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) MELALUI METODE AUTOREGRESSIVE (AR) DAN VECTOR AUTOREGRESSIVE (VAR).," 2015.

K. Greff, . R. K. Srivastava, J. Koutnik, B. R. Steunebrink and . J. Schmidhuber, "LSTM: A SEARCH SPACE ODYSSEY," IEEE Transactions on Neural Networks and Learning Systems, vol. 28, pp. 2222-2232, 2017. doi: https://doi.org/10.1109/TNNLS.2016.2582924

D. L. Kurniawati and F. S. Islami, "ANALISIS PENGARUH PMA, PMDN DAN EKSPOR MIGAS-NONMIGAS TERHADAP PERTUMBUHAN EKONOMI INDONESIA," Transekonomika: Akutansi, Bisnis Dan Keuangan, pp. 12 - 28, 2022. doi: https://doi.org/10.55047/transekonomika.v2i1.98

E. Ervani, ANALISIS FAKTOR YANG MEMPENGARUHI PERTUMBUHAN EKONOMI DI INDONESIA PERIODE TAHUN 1980-2004., Majalah Ilmiah UNIKOM, 2011.

R. Fahrudin and I. D. Sumitra, "PERAMALAN INFLASI MENGGUNAKAN METODE SARIMA DAN SINGLE EXPONENTIAL SMOOTHING (STUDI KASUS: KOTA BANDUNG)," Majalah Ilmiah UNIKOM, vol. 17, pp. 111-120, 2020. doi: https://doi.org/10.34010/miu.v17i2.3180

B. F. Nugraha, "PERAMALAN INFLASI INDONESIA BERDASARKAN IHK TERHADAP EKSPOR, IMPORT, DAN BI - RATE," 2018.

S. Zahara and Sugianto and Sugianto, "PERAMALAN DATA INDEKS KONSUMEN BERBASIS TIME SERIES MULTIVARIATE MENGGUNAKAN DEEP LEARNING," Journal Rekayasa Sistem dan Teknologi Informasi,," pp. 24 - 30, 2021. doi: https://doi.org/10.29207/resti.37v5i1.2562

A. T. Arianto , K. Parmikanti , B. Suhandi and B. N, "PERAMALAN KONSENTRASI PARTIKULATE MATTER 2,5 (PM25) MENGGUNAKAN MODEL VECTOR AUTOREGRESSIVE DENGAN METODE MAXIMUM LIKELIHOOD ESTIMATION," Jurnal Publikasi Ilmiah Matematika, vol. 6, 2021. doi: https://doi.org/10.15575/kubik.v6i1.8046

X. Song,, Y. Liu, L. Xue, J. Wang and J. Zhang,, "TIME-SERIES WELL PERFORMANCE PREDICTION BASED ON LONG SHORT-TERM MEMORY (LSTM) NEURAL NETWORK MODEL,"," Journal of Petroleum Science and Engineering,, vol. 186, p. 106682, 2019. doi: https://doi.org/10.1016/j.petrol.2019.106682

P. R. Hardani, A. Hoyyi and Sudarno, "PERAMALAN LAJU INFLASI, SUKU BUNGA, INDONESIA DAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN METODE VEKTOR AUTOREGRESSIVE (VAR)," Jurnal Gaussian, vol. 4, pp. 101 - 110, 2016.

H. Prabowo, Suhartono and D. D. Prastyo, "THE PERFORMANCE OF RAMSEY TEST, WHITE TEST AND TERASVIRTA TEST IN DETECTING NONLINEARITY," Jurnal Inferensi, vol. 3, 2020. doi: https://doi.org/10.12962/j27213862.v3i1.6876

Published
2026-01-26
How to Cite
[1]
A. F. Ningrum and M. Khaira, “HYBRID VECTOR AUTOREGRESSIVE AND LONG SHORT TERM MEMORY MODEL FOR PREDICTING ECONOMIC GROWTH INDICATORS IN INDONESIA: A COMPARISON OF ADAM, NADAM, AND RMSPROP OPTIMIZATION METHODS”, BAREKENG: J. Math. & App., vol. 20, no. 2, pp. 1139–1154, Jan. 2026.