GENERALIZED NESTED COPULA REGRESSION TO UNVEIL THE IMPACT OF EXCHANGE RATES AND NIKKEI 225 ON BANK MANDIRI STOCK PRICE

  • Alfi Khairiati Program Study of Mathematics, Faculty of Science and Information Technology, Institut Sains dan Teknologi Nasional, Indonesia https://orcid.org/0009-0005-6169-8689
  • Retno Budiarti Program Study of Actuary, School of Data Science, Mathematics and Informatics, IPB University, Indonesia https://orcid.org/0000-0003-3500-7272
  • Mohamad Khoirun Najib Program Study of Mathematics, School of Data Science, Mathematics and Informatics, IPB University, Indonesia https://orcid.org/0000-0002-4372-4661
Keywords: Copula regression, Dependency modeling, Financial forecasting, Nested copula, Stock price prediction

Abstract

Fluctuations in exchange rates and foreign stock indices strongly influence domestic stock performance, particularly in the banking sector, which is highly sensitive to global economic dynamics. Traditional financial models often fail to capture the complex, non-linear dependencies between these variables, underscoring the need for more advanced approaches. This study examines the effectiveness of copula-based regression models in predicting Bank Mandiri’s (BMRI) stock price using exchange rates and the Nikkei 225 Index as predictors. Conventional regression methods, such as Linear Regression, cannot adequately capture nonlinear relationships and tail dependencies in financial time series. To address this, we compare Elliptical Copula, Symmetric Archimedean Copula, Asymmetric Archimedean Copula, and Generalized Nested Copula models. Results show that the Generalized Nested Copula Regression achieves the lowest Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Weighted MAPE (wMAPE), effectively modeling asymmetric and tail dependencies that are crucial in financial forecasting. While Elliptical Copula (t-Copula) also provides strong predictive accuracy, Archimedean copulas perform poorly, failing to improve upon linear regression. These findings highlight the importance of flexible statistical models in financial prediction, demonstrating that copula-based regression offers a superior alternative to traditional methods. Unlike prior research that often relied on simpler copula families or linear models, this study introduces a Generalized Nested Copula Regression in the context of the Indonesian banking sector, addressing a gap in emerging market literature. The study assumes correctly specified marginal distributions and a stable dependency structure, which may limit applicability under rapidly changing market conditions. Future work should consider dynamic copula structures and additional economic indicators to further enhance predictive accuracy.

Downloads

Download data is not yet available.

References

A. Maulana, Mayrinda, M. Fitriyani, Deni, and Y. Adiyanto, “RISK MANAGEMENT AS A DETERMINANT OF INDONESIAN BANKING FINANCIAL PERFORMANCE: A SYSTEMATIC LITERATURE APPROACH,” Indo-Fintech Intellectuals J. Econ. Bus., vol. 4, no. 5, pp. 2523–2537, 2024, doi: https://doi.org/10.54373/ifijeb.v4i5.2120.

A. Njegovanović, “COMPLEX SYSTEMS IN INTERDISCIPLINARY INTERACTION,” Financ. Mark. Institutions Risks, vol. 8, no. 1, pp. 94–107, 2024, doi: https://doi.org/10.61093/fmir.8(1).94-107.2024.

W. Yaméogo and D. Barro, “MODELING THE DEPENDENCE OF LOSSES OF A FINANCIAL PORTFOLIO USING NESTED ARCHIMEDEAN COPULAS,” Int. J. Math. Math. Sci., vol. 2021, 2021, doi: https://doi.org/10.1155/2021/4651044.

Y. Li, H. Chen, M. Yi, J. Li, and C. Fang, “SEISMIC VULNERABILITY ANALYSIS OF BRIDGES INCORPORATING SCOUR UNCERTAINTY USING A COPULA-BASED APPROACH,” Ocean Eng., vol. 323, 2025, doi: https://doi.org/10.1016/j.oceaneng.2025.120598.

C. Su and Q. Wang, “RELIABILITY EVALUATION FOR ELECTROMECHANICAL PRODUCTS BASED ON IMPROVED MULTILEVEL NESTED COPULA METHOD,” Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal Southeast Univ. (Natural Sci. Ed., vol. 52, no. 5, pp. 981–989, 2022, doi: https://doi.org/10.3969/j.issn.1001-0505.2022.5.019

L. Tibiletti, “BENEFICIAL CHANGES IN RANDOM VARIABLES VIA COPULAS: AN APPLICATION TO INSURANCE,” GENEVA Pap. Risk Insur. Theory, vol. 20, no. 2, pp. 191–202, 1995, doi: https://doi.org/10.1007/BF01258396.

E. W. Frees and E. A. Valdez, “UNDERSTANDING RELATIONSHIPS USING COPULAS,” North Am. Actuar. J., vol. 2, no. 1, pp. 1–25, 1998, doi: https://doi.org/10.1080/10920277.1998.10595667.

K. Aas, C. Czado, A. Frigessi, and H. Bakken, “PAIR-COPULA CONSTRUCTIONS OF MULTIPLE DEPENDENCE,” Insur. Math. Econ., vol. 44, no. 2, pp. 182–198, 2009, doi: https://doi.org/10.1016/j.insmatheco.2007.02.001.

T. W. Mas’oed, S. Nurdiati, A. Sopaheluwakan, M. K. Najib, and A. Salsabila, “MODELING FIRE HOTSPOTS IN KALIMANTAN, INDONESIA USING NESTED 3-COPULA REGRESSION BASED ON PRECIPITATION AND DRY DAYS DURING DIFFERENT ENSO PHASES,” Geogr. Tech., vol. 19, no. 2, pp. 264–281, 2024, doi: https://doi.org/10.21163/GT_2024.192.21.

M. K. Najib, S. Nurdiati, and A. Sopaheluwakan, “PREDICTION OF HOTSPOTS PATTERN IN KALIMANTAN USING COPULA-BASED QUANTILE REGRESSION AND PROBABILISTIC MODEL: A STUDY OF PRECIPITATION AND DRY SPELLS ACROSS VARIED ENSO CONDITIONS,” Vietnam J. Earth Sci., vol. 46, no. 1, pp. 12–33, 2024, doi: 1https://doi.org/10.15625/2615-9783/19302.

A. K. Nikoloulopoulos, “ON COMPOSITE LIKELIHOOD IN BIVARIATE META-ANALYSIS OF DIAGNOSTIC TEST ACCURACY STUDIES,” AStA Adv. Stat. Anal., vol. 102, no. 2, pp. 211–227, 2018, doi: https://doi.org/10.1007/s10182-017-0299-y.

S. Cho, M. A. Psioda, and J. G. Ibrahim, “BAYESIAN JOINT MODELING OF MULTIVARIATE LONGITUDINAL AND SURVIVAL OUTCOMES USING GAUSSIAN COPULAS,” Biostatistics, 2024, doi: https://doi.org/10.1093/biostatistics/kxae009.

C. Cui et al, “MULTIDIMENSIONAL SEISMIC FRAGILITY ANALYSIS OF SUBWAY STATION STRUCTURES USING THE ADAPTIVE BANDWIDTH KERNEL DENSITY ESTIMATION AND COPULA FUNCTION,” Undergr. Sp., vol. 22, pp. 110–123, 2025, doi: https://doi.org/10.1016/j.undsp.2024.10.004.

E. Dehghani et al, “INTRODUCING COPULA AS A NOVEL STATISTICAL METHOD IN PSYCHOLOGICAL ANALYSIS,” Int. J. Environ. Res. Public Health, vol. 18, no. 15, 2021, doi: https://doi.org/10.3390/ijerph18157972.

N. Whelan, “SAMPLING FROM ARCHIMEDEAN COPULAS,” Quant. Financ., vol. 4, no. 3, pp. 339–352, 2004, doi: https://doi.org/10.1088/1469-7688/4/3/009.

F. Serinaldi and S. Grimaldi, “FULLY NESTED 3-COPULA: PROCEDURE AND APPLICATION ON HYDROLOGICAL DATA,” J. Hydrol. Eng., vol. 12, no. 4, pp. 420–430, 2007, doi: https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(420).

A. J. McNeil, “SAMPLING NESTED ARCHIMEDEAN COPULAS,” J. Stat. Comput. Simul., vol. 78, no. 6, pp. 567–581, 2008, doi: https://doi.org/10.1080/00949650701255834.

P. R. Dewick and S. Liu, “COPULA MODELLING TO ANALYSE FINANCIAL DATA,” J. Risk Financ. Manag., vol. 15, no. 3, 2022, doi: https://doi.org/10.3390/jrfm15030104.

M. K. Najib, S. Nurdiati, and A. Sopaheluwakan, “QUANTIFYING THE JOINT DISTRIBUTION OF DROUGHT INDICATORS IN BORNEO FIRE-PRONE AREA,” IOP Conf. Ser. Earth Environ. Sci., vol. 880, no. 1, 2021, doi: https://doi.org/10.1088/1755-1315/880/1/012002.

P. Kumar, “COPULA FUNCTIONS AND APPLICATIONS IN ENGINEERING,” in Logistics, supply chain and financial predictive analytics: theory and practices, Singapore: Springer Singapore, 2019, pp. 195–209. doi: 1https://doi.org/10.1007/978-981-13-0872-7_15.

R. B. Nelsen, AN INTRODUCTION TO COPULAS. Springer, 2006.

A. Sklar, “FONCTIONS DE RÉPARTITION ÀN DIMENSIONS ET LEURS MARGES,” Publ. L’Institut Stat. L’Université Paris, vol. 8, pp. 229–231, 1959.

S. Nurdiati, T. W. Mas’oed, M. K. Najib, and D. Rahmawati, “JOINT DISTRIBUTION AND PROBABILITY DENSITY OF CLIMATE FACTORS IN KALIMANTAN USING NESTED COPULAS,” Barekeng, vol. 19, no. 2, pp. 1203–1216, 2025, doi: https://doi.org/10.30598/barekengvol19iss2pp1203-1216.

B. K. Jha and Y. J. Danjuma, “UNSTEADY DEAN FLOW FORMATION IN AN ANNULUS WITH PARTIAL SLIPPAGE: A RIEMANN-SUM APPROXIMATION APPROACH,” Results Eng., vol. 5, 2020, doi: https://doi.org/10.1016/j.rineng.2019.100078.

X. Huang and Z. Wang, “PROBABILISTIC SPATIAL PREDICTION OF CATEGORICAL DATA USING ELLIPTICAL COPULAS,” Stoch. Environ. Res. Risk Assess., vol. 32, no. 6, pp. 1631–1644, 2018, doi: https://doi.org/10.1007/s00477-017-1485-x.

Y. Zhao and C. Genest, “INFERENCE FOR ELLIPTICAL COPULA MULTIVARIATE RESPONSE REGRESSION MODELS,” Electron. J. Stat., vol. 13, no. 1, pp. 911–984, 2019, doi: https://doi.org/10.1214/19-EJS1534.

B. W. Langworthy, R. L. Stephens, J. H. Gilmore, and J. P. Fine, “CANONICAL CORRELATION ANALYSIS FOR ELLIPTICAL COPULAS,” J. Multivar. Anal., vol. 183, 2021, doi: https://doi.org/10.1016/j.jmva.2020.104715.

Y. He, L. Zhang, J. Ji, and X. Zhang, “ROBUST FEATURE SCREENING FOR ELLIPTICAL COPULA REGRESSION MODEL,” J. Multivar. Anal., vol. 173, pp. 568–582, 2019, doi: https://doi.org/10.1016/j.jmva.2019.05.003.

G. Risca et al, “ARCHIMEDEAN COPULAS: A USEFUL APPROACH IN BIOMEDICAL DATA—A REVIEW WITH AN APPLICATION IN PEDIATRICS,” Stats, vol. 8, no. 3, 2025, doi: https://doi.org/10.3390/stats8030069.

N. Uyttendaele, “ON THE ESTIMATION OF NESTED ARCHIMEDEAN COPULAS: A THEORETICAL AND AN EXPERIMENTAL COMPARISON,” Comput. Stat., vol. 33, no. 2, pp. 1047–1070, 2018, doi: https://doi.org/10.1007/s00180-017-0743-1.

Y. Ng, A. Hasan, K. Elkhalil, and V. Tarokh, “GENERATIVE ARCHIMEDEAN COPULAS,” 37th Conf. Uncertain. Artif. Intell. UAI 2021, pp. 643–653, 2021.

T. D. Kularatne, J. Li, and D. Pitt, “ON THE USE OF ARCHIMEDEAN COPULAS FOR INSURANCE MODELLING,” Ann. Actuar. Sci., vol. 15, no. 1, pp. 57–81, 2021, doi: https://doi.org/10.1017/S1748499520000147.

C. K. Ling, F. Fang, and J. Z. Kolter, “DEEP ARCHIMEDEAN COPULAS,” Adv. Neural Inf. Process. Syst., vol. 2020-December, 2020.

F. Li, J. Zhou, and C. Liu, “STATISTICAL MODELLING OF EXTREME STORMS USING COPULAS: A COMPARISON STUDY,” Coast. Eng., vol. 142, pp. 52–61, 2018, doi: https://doi.org/10.1016/j.coastaleng.2018.09.007.

G. D’Amico, F. Petroni, and F. Prattico, “WIND SPEED PREDICTION FOR WIND FARM APPLICATIONS BY EXTREME VALUE THEORY AND COPULAS,” J. Wind Eng. Ind. Aerodyn., vol. 145, pp. 229–236, 2015, doi: https://doi.org/10.1016/j.jweia.2015.06.018.

H. Elgohari and H. M. Yousof, “A NEW EXTREME VALUE MODEL WITH DIFFERENT COPULA, STATISTICAL PROPERTIES AND APPLICATIONS,” Pakistan J. Stat. Oper. Res., vol. 17, no. 4, pp. 1015–1035, 2021, doi: https://doi.org/10.18187/pjsor.v17i4.3471.

D. Lee and H. Joe, “MULTIVARIATE EXTREME VALUE COPULAS WITH FACTOR AND TREE DEPENDENCE STRUCTURES,” Extremes, vol. 21, no. 1, pp. 147–176, 2018, doi: https://doi.org/10.1007/s10687-017-0298-0.

M. A. Ehsan, A. Shahirinia, J. Gill, and N. Zhang, “DEPENDENT WIND SPEED MODELS: COPULA APPROACH,” 2020 IEEE Electr. Power Energy Conf. EPEC 2020, 2020, doi: https://doi.org/10.1109/EPEC48502.2020.9320024.

S. Latif, I. El Ouadi, and T. B. M. J. Ouarda, “COPULA-BASED JOINT DISTRIBUTION MODELLING OF PRECIPITATION, TEMPERATURE AND HUMIDITY EVENTS IN THE ASSESSMENTS OF AGRICULTURAL RISKS, WITH A CASE STUDY IN MOROCCO,” Stoch. Environ. Res. Risk Assess., 2025, doi: https://doi.org/10.1007/s00477-025-03047-4.

S. Latif and F. Mustafa, “BIVARIATE FLOOD DISTRIBUTION ANALYSIS UNDER PARAMETRIC COPULA FRAMEWORK: A CASE STUDY FOR KELANTAN RIVER BASIN IN MALAYSIA,” Acta Geophys., vol. 68, no. 3, pp. 821–859, 2020, doi: https://doi.org/10.1007/s11600-020-00435-y.

A. Shahirinia, Z. Farahmandfar, M. T. Bina, S. B. Henderson, and M. Ashtary, “SPATIAL MODELING SENSITIVITY ANALYSIS: COPULA SELECTION FOR WIND SPEED DEPENDENCE,” AIP Adv., vol. 14, no. 4, 2024, doi: https://doi.org/10.1063/5.0185710.

Z. Li, Q. Shao, Q. Tian, and L. Zhang, “COPULA-BASED DROUGHT SEVERITY-AREA-FREQUENCY CURVE AND ITS UNCERTAINTY, A CASE STUDY OF HEIHE RIVER BASIN, CHINA,” Hydrol. Res., vol. 51, no. 5, pp. 867–881, 2020, doi: https://doi.org/10.2166/nh.2020.173.

M. K. Najib, S. Nurdiati, and A. Sopaheluwakan, “MULTIVARIATE FIRE RISK MODELS USING COPULA REGRESSION IN KALIMANTAN, INDONESIA,” Nat. Hazards, vol. 113, no. 2, pp. 1263–1283, 2022, doi: https://doi.org/10.1007/s11069-022-05346-3.

M. K. Najib, S. Nurdiati, and A. Sopaheluwakan, “COPULA-BASED JOINT DISTRIBUTION ANALYSIS OF THE ENSO EFFECT ON THE DROUGHT INDICATORS OVER BORNEO FIRE-PRONE AREAS,” Model. Earth Syst. Environ., vol. 8, no. 2, pp. 2817–2826, 2022, doi: https://doi.org/10.1007/s40808-021-01267-5

X. Wei et al, “COINCIDENCE PROBABILITY OF STREAMFLOW IN WATER RESOURCES AREA, WATER RECEIVING AREA AND IMPACTED AREA: IMPLICATIONS FOR WATER SUPPLY RISK AND POTENTIAL IMPACT OF WATER TRANSFER,” Hydrol. Res., vol. 51, no. 5, pp. 1120–1135, 2020, doi: https://doi.org/10.2166/nh.2020.106.

M. N. Tahroudi, Y. Ramezani, C. De Michele, and R. Mirabbasi, “ANALYZING THE CONDITIONAL BEHAVIOR OF RAINFALL DEFICIENCY AND GROUNDWATER LEVEL DEFICIENCY SIGNATURES BY USING COPULA FUNCTIONS,” Hydrol. Res., vol. 51, no. 6, pp. 1332–1348, 2020, doi: https://doi.org/10.2166/nh.2020.036

I. I. Gringorten, “A PLOTTING RULE FOR EXTREME PROBABILITY PAPER,” J. Geophys. Res., vol. 68, no. 3, pp. 813–814, 1963, doi: https://doi.org/10.1029/JZ068i003p00813.

Published
2026-01-26
How to Cite
[1]
A. Khairiati, R. Budiarti, and M. K. Najib, “GENERALIZED NESTED COPULA REGRESSION TO UNVEIL THE IMPACT OF EXCHANGE RATES AND NIKKEI 225 ON BANK MANDIRI STOCK PRICE”, BAREKENG: J. Math. & App., vol. 20, no. 2, pp. 1167–1184, Jan. 2026.