SPATIAL INTERPOLATION OF RAINFALL DATA USING COKRIGING AND RECURRENT NEURAL NETWORKS FOR HYDROLOGICAL APPLICATIONS IN SURABAYA, INDONESIA

  • Danang Ariyanto Actuarial Science Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Indonesia https://orcid.org/0000-0002-7642-6775
  • A'yunin Sofro Actuarial Science Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Indonesia https://orcid.org/0000-0003-2603-4092
  • Riskyana Dewi I Puspitasari Data Science Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Indonesia https://orcid.org/0000-0002-6065-6090
  • Riska Wahyu Romadhonia Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Indonesia https://orcid.org/0009-0000-7677-6559
  • Hernando Ombao Statistics Study Program, Computing, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Saudi Arabia https://orcid.org/0000-0001-7020-8091
Keywords: Interpolation, Rainfall, Recurrent Neural Network, Spatial, Surabaya

Abstract

Urban hydrological challenges, such as flooding and water resource management, require accurate rainfall data to support sustainable development. This study investigates the use of Recurrent Neural Networks (RNN) for spatial interpolation of monthly rainfall data across 31 districts in Surabaya, Indonesia, and compares its performance with the geostatistical method Cokriging. Elevation data were incorporated as an additional variable to account for geographical variability. The dataset was divided into training (26 locations) and testing (5 locations) subsets, with testing locations treated as missing data points to simulate real-world conditions. The results show that the RNN-based interpolation method achieved progressively lower Root Mean Square Error (RMSE) values from January (48.65) to April (13.78), indicating higher accuracy compared to the Cokriging method. These findings underscore the potential of RNN in addressing data gaps and spatial variability, offering robust solutions for hydrological applications in urban environments. This approach not only supports flood risk mitigation strategies but also contributes to optimizing drainage systems and water resource planning. Further research is recommended to incorporate additional environmental variables and extend the application to broader spatial and temporal contexts.

Downloads

Download data is not yet available.

References

Hartanto, S. Humaidi, E. Frida, N. Ananda, and M. Sinambela, “SPATIAL EVALUATION RAINFALL ESTIMATION ON WEATHER RADAR USING MARSHALL–PALMER REFLECTIVITY–RAINFALL RATE IN BANTEN,” Journal of Water and Land Development, no. No 62, pp. 193–200, 2024. doi: https://doi.org/10.24425/jwld.2024.151567.

E. P. Dewi, R. Juniatmoko, V. Arida, F. Fachruddin, and P. Pribadyo., “HIDROLOGI TEKNIK DAN AGROKLIMATOLOGI,” 2023.

E. T. Asmorowati, A. Rahmawati, D. Sarasanty, A. A. Kurniawan, M. A. Rudiyanto, E. Nadya, M. W. Nugroho and Findia., DRAINASE PERKOTAAN. Perkumpulan Rumah Cemerlang Indonesia, 2021.

Ö. Baydaroğlu and I. Demir, “TEMPORAL AND SPATIAL SATELLITE DATA AUGMENTATION FOR DEEP LEARNING-BASED RAINFALL NOWCASTING,” Journal of Hydroinformatics, vol. 26, no. 3, pp. 589–607, 2024. doi: https://doi.org/10.2166/hydro.2024.235.

A. Pamungkas and S. Purwitaningsih, “IS SURABAYA BEING PLANNED AS A LOW-RISK CITY?,” International Review for Spatial Planning and Sustainable Development, vol. 9, no. 1, pp. 78–92, 2021. doi: https://doi.org/10.14246/irspsda.9.1_78.

D. Lettenmaier, “JOURNAL OF GEOGRAPHY & NATURAL ROLE OF RAINFALL IN HYDROLOGICAL MODELING AND WATER RESOURCE PLANNING,” vol. 14, no. 1000319, pp. 1–2, 2024. doi: https://doi.org/10.35841/2167-0587.24.14.319.

E. Pilecka, J. Zięba, and D. Szwarkowski, “ANALYSIS OF THE BEHAVIOUR OF THE HIGH AND STEEP SLOPE OF A ROAD MADE THROUGH WASTE UNDER THE INFLUENCE OF RAINFALL,” Archives of Civil Engineering, vol. 67, no. No 2, pp. 293–307, 2021. doi: https://doi.org/10.24425/ace.2021.137169.

M. Sholihin and S. E. Puspita Ghaniy Anggraini, ANALISIS DATA PENELITIAN MENGGUNAKAN SOFTWARE STATA. Penerbit Andi, 2021.

M. R. A. Prasetya and A. M. Priyatno, “PENANGANAN IMPUTASI MISSING VALUES PADA DATA TIME SERIES DENGAN MENGGUNAKAN METODE DATA MINING,” Jurnal Informasi dan Teknologi, pp. 52–62, 2023. doi: https://doi.org/10.37034/jidt.v5i2.324

M. I. Syukur, “PENERAPAN METODE ROBUST KRIGING PADA DATA CURAH HUJAN WILAYAH SULAW ESI SELATAN UNTUK MENGESTIMASI ADANYA OUTLIER YANG DISEBABKAN OLEH DATA HILANG,” 2023, Universitas Hasanuddin.

A. P. Putra, “SPATIAL PATTERN OF SULFUR DIOXIDE DISPERSION AND AFFECTED SETTLEMENT AREAS IN SERANG REGENCY BANTEN PROVINCE POLA SPASIAL DISPERSI GAS SULFUR DIOKSIDA DAN AREA PERMUKIMAN TERDAMPAK DI KABUPATEN SERANG,” Jurnal Sains dan Teknologi Mitigasi Bencana, vol. 15, no. 1, 2020. doi: https://doi.org/10.29122/jstmb.v15i1.4117

F. Rizkiansyah, “IMPLEMENTASI METODE HYBRID AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)–ARTIFICIAL NEURAL NETWORK (ANN) DALAM PERAMALAN HARGA MATA UANG KRIPTO,” 2022.

N. J. C. Konin, Y. A. N’go, G. E. Soro, and B. T. A. Goula, “IMPACT OF RAINFALL TRENDS ON FLOOD IN AGNÉBY WATERSHED,” Journal of Water and Land Development, no. No 52, pp. 9–20, 2022. doi: https://doi.org/10.24425/jwld.2021.139938.

N. Annisa, “ANALISIS SEBARAN SALINITAS AIR BERBASIS SISTEM INFORMASI GEOGRAFIS (STUDI KASUS SUNGAI TALLO),” 2023, Universitas Hasanuddin.

Y. Saliba and A. Bărbulescu, “A COMPARATIVE EVALUATION OF SPATIAL INTERPOLATION TECHNIQUES FOR MAXIMUM TEMPERATURE SERIES IN THE MONTREAL REGION, CANADA,” Romanian Reports in Physics, vol. 76, no. 1, pp. 1–15, 2024. doi: https://doi.org/10.59277/RomRepPhys.2024.76.701.

M. Zhang, D. Yu, Y. Li, and L. Zhao, “DEEP GEOMETRIC NEURAL NETWORK FOR SPATIAL INTERPOLATION,” GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, 2022. doi: https://doi.org/10.1145/3557915.3561008.

A. Antal, P. M. P. Guerreiro, and S. Cheval, “COMPARISON OF SPATIAL INTERPOLATION METHODS FOR ESTIMATING THE PRECIPITATION DISTRIBUTION IN PORTUGAL,” Theoretical and Applied Climatology, vol. 145, no. 3, pp. 1193–1206, 2021. doi: https://doi.org/10.1007/s00704-021-03675-0

P. Pradabmook and T. Laosuwan, “ESTIMATION OF PM10 USING SPATIAL INTERPOLATION TECHNIQUES,” International Journal on Technical and Physical Problems of Engineering, vol. 13, no. 4, pp. 33–39, 2021.

G. Urva et al., PENERAPAN DATA MINING DI BERBAGAI BIDANG: Konsep, Metode, dan Studi Kasus. PT. Sonpedia Publishing Indonesia, 2023.

S. Rifky, L. P. I. Kharisma, A. R. Afendi and I. Zulfa, Artificial INTELLIGENCE: TEORI DAN PENERAPAN AI DI BERBAGAI BIDANG. PT. Sonpedia Publishing Indonesia, 2024.

M. A. Faishol, E. Endroyono, and A. N. Irfansyah, “PREDICT URBAN AIR POLLUTION IN SURABAYA USING RECURRENT NEURAL NETWORK–LONG SHORT TERM MEMORY,” Jurnal Ilmiah Teknologi Informasi, vol. 18, no. 2, pp. 102–114, 2020. doi: https://doi.org/10.12962/j24068535.v18i2.a988

Z. Chen, Z. Li, X. Tang, L. Chen, and N. Chen, “STPNet: A RECURRENT NEURAL NETWORK FOR SPATIOTEMPORAL PROCESSES PREDICTIVE LEARNING,” Journal of Supercomputing, vol. 81, no. 1, 2025. doi: https://doi.org/10.1007/s11227-024-06823-1.

H. Febrianto, A. Fariza, and J. Hasim, “URBAN FLOOD RISK MAPPING USING ANALYTIC HIERARCHY PROCESS AND NATURAL BREAK CLASSIFICATION (CASE STUDY: SURABAYA, EAST JAVA, INDONESIA),” 2016, pp. 148–154. doi: https://doi.org/10.1109/KCIC.2016.7883639.

Y. R. Savitri, R. Kakimoto, R. A. Begum, N. Anwar, W. Wardoyo, and E. Suryani, “THE APPLICATION OF AHP TO DETERMINE THE PRIORITY DRAINAGE SYSTEM ON FLOOD MITIGATION IN SURABAYA – INDONESIA,” Journal of Disaster Research, vol. 17, no. 3, pp. 431–443, 2022. doi: https://doi.org/10.20965/jdr.2022.p0431.

C. M. Duff, “USING SPACETIME GEOSTATISTICAL ANALYSIS TO IMPROVE INTERPOLATION,” Journal of Hydrology, 2025. doi: https://doi.org/10.1016/j.jhydrol.2024.131987.

T. Page, “INTERPOLATION OF RAINFALL OBSERVATIONS DURING EXTREME EVENTS: COMPARING NNI, OK, AND CK,” Hydrological Processes, vol. 36, no. 11, p. e14758, 2022. doi: https://doi.org/10.1002/hyp.14758.

Q. Hu, Z. Li, L. Wang, Y. Huang, Y. Wang, and L. Li, “RAINFALL SPATIAL ESTIMATIONS: A REVIEW FROM SPATIAL INTERPOLATION TO MULTI-SOURCE DATA MERGING,” Water, vol. 11, no. 3, 2019. doi: https://doi.org/10.3390/w11030579.

M. A. Faishol, E. Endroyono, and A. N. Irfansyah, “PREDICT URBAN AIR POLLUTION IN SURABAYA USING RECURRENT NEURAL NETWORK–LONG SHORT TERM MEMORY,” Jurnal Ilmiah Teknologi Informasi, vol. 18, no. 2, pp. 102–114, 2020. doi: https://doi.org/10.12962/j24068535.v18i2.a988

I. F. Damanik, “PENERAPAN METODE JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI NILAI TUKAR PETANI SUBSEKTOR TANAMAN PANGAN MENGGUNAKAN ALGORITMA CONJUGATE GRADIENT POLA-REBIERI,” SkripsiKu-2022, vol. 1, no. 2, 2022.

M. Zakaria, L. Pagiling, and W. O. S. N. Alam, “SISTEM PENYIRAMAN OTOMATIS TANAMAN SEMUSIM BERBASIS JARINGAN SARAF TIRUAN MULTILAYER PERCEPTRON,” Jurnal Fokus Elektroda: Energi Listrik, Telekomunikasi, Komputer, Elektronika Dan Kendali, vol. 7, no. 1, p. 35, 2022. doi: https://doi.org/10.33772/jfe.v7i1.24050

W Tri Zahrotun, “PERAMALAN HARGA GABAH KERING PANEN DI INDONESIA MENGGUNAKAN METODE HYBRID AUTOREGRESSIVE INTEGRATED MOVING AVERAGE EXOGENOUS (ARIMAX)–FEED FORWARD NEURAL NETWORK (FFNN),” 2022, Universitas Muhammadiyah Semarang.

Z. C. Lipton, J. Berkowitz, and C. Elkan, “A CRITICAL REVIEW OF RECURRENT NEURAL NETWORKS FOR SEQUENCE LEARNING,” pp. 1–38, 2015.

C.-C. Peng and G. D. Magoulas, “SEQUENCE PROCESSING WITH RECURRENT NEURAL NETWORKS,” Encyclopedia of Artificial Intelligence, pp. 1411–1417, 2011. doi: https://doi.org/10.4018/978-1-59904-849-9.ch207.

G. R. Kanagachidambaresan, A. Ruwali, D. Banerjee, and K. B. Prakash, “RECURRENT NEURAL NETWORK,” Programming with TensorFlow: Solution for Edge Computing Applications, pp. 53–61, 2021.

J. L. Elman, “FINDING STRUCTURE IN TIME,” Cognitive Science, vol. 14, no. 2, pp. 179–211, 1990. doi: https://doi.org/10.1207/s15516709cog1402_1.

A. Bond, P. M. Léger, and S. Sénécal, THE EFFECT OF DEVICE-AFFORDANCE ALIGNMENT WITH THE USER GOAL ON USER EXPERIENCE, vol. 12423 LNCS. Springer International Publishing, 2020. doi: https://doi.org/10.1007/978-3-030-60114-0_3.

R Core Team, “R: A LANGUAGE AND ENVIRONMENT FOR STATISTICAL COMPUTING,” 2023, Vienna, Austria.

RStudio Team, “RSTUDIO: INTEGRATED DEVELOPMENT ENVIRONMENT FOR R,” 2023, Boston, MA.

T. O. Hodson, “ROOT MEAN SQUARE ERROR (RMSE) OR MEAN ABSOLUTE ERROR (MAE): WHEN TO USE THEM OR NOT,” Geoscientific Model Development Discussions, vol. 2022, pp. 1–10, 2022. doi: https://doi.org/10.5194/gmd-2022-64

E. J. Pebesma, “MULTIVARIABLE GEOSTATISTICS IN S: THE GSTAT PACKAGE,” Computers & Geosciences, vol. 30, no. 7, pp. 683–691, Dec. 2004. doi: https://doi.org/10.1016/j.cageo.2004.03.012.

B. Gräler, E. Pebesma, and G. Heuvelink, “SPATIO-TEMPORAL INTERPOLATION USING GSTAT,” The R Journal, vol. 8, no. 1, pp. 204–218, Aug. 2016. doi: https://doi.org/10.32614/RJ-2016-014.

Published
2026-01-26
How to Cite
[1]
D. Ariyanto, A. Sofro, R. D. I. Puspitasari, R. W. Romadhonia, and H. Ombao, “SPATIAL INTERPOLATION OF RAINFALL DATA USING COKRIGING AND RECURRENT NEURAL NETWORKS FOR HYDROLOGICAL APPLICATIONS IN SURABAYA, INDONESIA”, BAREKENG: J. Math. & App., vol. 20, no. 2, pp. 1185–1198, Jan. 2026.