ENHANCED GIANT TREVALLY OPTIMIZER FOR ENGINEERING DESIGN AND EPIDEMIOLOGICAL MODEL

  • Ikhsan Rizqi Az-Zukruf As-Shidiq Department of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia https://orcid.org/0009-0006-3675-1510
  • E. Andry Dwi Kurniawan Department of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia https://orcid.org/0000-0002-2406-2068
  • Kuntjoro Adji Sidarto Department of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia https://orcid.org/0009-0005-7942-1661
Keywords: Benchmark functions, Engineering design, Giant Trevally Optimizer, Metaheuristics, Optimization, Sobol sequence

Abstract

Metaheuristic algorithms are widely used for solving complex optimization problems, but their performance often depends on the initialization strategy. This study proposes an enhanced Giant Trevally Optimizer (GTO) by introducing quasi-random Sobol sequences in the initialization phase, yielding the Sobol-initialized Giant Trevally Optimizer (SGTO). The algorithm was tested on forty benchmark functions, five engineering design problems, and an epidemiological model case study. Experimental results show that SGTO consistently outperforms the original GTO in terms of achieving optimal solutions, convergence, and its ability to maintain a consistent solution across multiple independent runs. Furthermore, the epidemiological case study demonstrates the adaptability of SGTO for tackling more complex real-world problems. This work is the first to adapt Sobol sequences for the GTO and apply it to an epidemiological model. These findings confirm that quasi-random initialization substantially improves exploration and exploitation, establishing SGTO as a versatile and reliable optimization tool.

Downloads

Download data is not yet available.

References

M. Khadivi, T. Charter, M. Yaghoubi, M. Jalayer, M. Ahang, A. Shojaeinasab, and H. Najjaran, “DEEP REINFORCEMENT LEARNING FOR MACHINE SCHEDULING: METHODOLOGY, THE STATE-OF-THE-ART, AND FUTURE DIRECTIONS,” Oct. 2023. doi: https://doi.org/10.1016/j.cie.2025.110856.

G. B. Fotopoulos, P. Popovich, and N. H. Papadopoulos, “REVIEW NON-CONVEX OPTIMIZATION METHOD FOR MACHINE LEARNING,” Oct. 2024. doi: 10.48550/arXiv.2410.02017.

F. Jiang, Y. Zhou, J. Liu, and Y. Ma, “ON HIGH DIMENSIONAL POISSON MODELS WITH MEASUREMENT ERROR: HYPOTHESIS TESTING FOR NONLINEAR NONCONVEX OPTIMIZATION,” Dec. 2022. doi: https://doi.org/10.1214/22-AOS2248.

X.-S. Yang, NATURE INSPIRED METAHEURISTIC ALGORITHMS. U.K.: Luniver Press, 2010.

A. Darwish, “BIO-INSPIRED COMPUTING: ALGORITHMS REVIEW, DEEP ANALYSIS, AND THE SCOPE OF APPLICATIONS,” Future Computing and Informatics Journal, vol. 3, no. 2, pp. 231–246, Dec. 2018. doi: https://doi.org/10.1016/j.fcij.2018.06.001.

D. Whitley, "A GENETIC ALGORITHM TUTORIAL," Department of Computer Science, Colorado State University, Fort Collins, CO, USA, 1993.

R. Eberhart and J. Kennedy, “A NEW OPTIMIZER USING PARTICLE SWARM THEORY,” Aug. 2002. doi: https://doi.org/10.1109/MHS.1995.494215

R. V. Rao, V. J. Savsani, and D. P. Vakharia, “TEACHING-LEARNING-BASED OPTIMIZATION: A NOVEL METHOD FOR CONSTRAINED MECHANICAL DESIGN OPTIMIZATION PROBLEMS,” CAD Computer Aided Design, vol. 43, no. 3, pp. 303–315, Mar. 2011. doi: https://doi.org/10.1016/j.cad.2010.12.015.

E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A GRAVITATIONAL SEARCH ALGORITHM,” Inf Sci (N Y), vol. 179, no. 13, pp. 2232–2248, Jun. 2009. doi: https://doi.org/10.1016/j.ins.2009.03.004.

H. T. Sadeeq and A. M. Abdulazeez, “GIANT TREVALLY OPTIMIZER (GTO): A NOVEL METAHEURISTIC ALGORITHM FOR GLOBAL OPTIMIZATION AND CHALLENGING ENGINEERING PROBLEMS,” IEEE Access, vol. 10, pp. 121615–121640, 2022. doi: https://doi.org/10.1109/ACCESS.2022.3223388.

K. A. Sidarto and A. Kania, “FINDING ALL SOLUTIONS OF SYSTEMS OF NONLINEAR EQUATIONS USING SPIRAL DYNAMICS INSPIRED OPTIMIZATION WITH CLUSTERING,” Sept. 2015. doi: https://doi.org/10.20965/jaciii.2015.p0697

D. W. Sims, E. J. Southall, N. E. Humphries, G. C. Hays, C. J. A. Bradshaw, J. W. Pitchford, A. James, M. Z. Ahmed, A. S. Brierley, M. A. Hindell, D. Morritt, M. K. Musyl, D. Righton, E. L. C. Shepard, V. J. Wearmouth, R. P. Wilson, M. J. Witt and J. D. Metcalfe., “SCALING LAWS OF MARINE PREDATOR SEARCH BEHAVIOUR,” Nature, vol. 451, no. 7182, pp. 1098–1102, Feb. 2008. doi: https://doi.org/10.1038/nature06518.

N. E. Humphries, N. Queiroz, J. R. M. Dyer, N. G. Pade, M. K. Musyl, K. M. Schaefer, D. W. Fuller, J. M. Brunnschweiler, T. K. Doyle, J. D. R. Houghton, G. C. Hays, C. S. Jones, L. R. Noble, V. J. Wearmouth, E. J. Southall and D. W. Sims., “ENVIRONMENTAL CONTEXT EXPLAINS LEVY AND BROWNIAN MOVEMENT PATTERNS OF MARINE PREDATORS,” Nature, vol. 465, no. 7301, pp. 1066–1069, Jun. 2010. doi: https://doi.org/10.1038/nature09116.

R.U. Seydel, TOOLS FOR COMPUTATIONAL FINANCE. Springer Berlin Heidelberg, 2009. doi: https://doi.org/10.1007/978-3-540-92929-1.

S. Joe and F. Y. Kuo, “CONSTRUCTING SOBOL’ SEQUENCES WITH BETTER TWO-DIMENSIONAL PROJECTIONS,” SIAM Journal on Scientific Computing, vol. 30, no. 5, pp. 2635–2654, 2007. doi: https://doi.org/10.1137/070709359.

Sobol', I. M., "UNIFORMLY DISTRIBUTED SEQUENCES WITH AN ADDITIONAL UNIFORM PROPERTY," USSR Computational Mathematics and Mathematical Physics, vol. 16, no. 5, pp. 236-242, 1976. doi: https://doi.org/10.1016/0041-5553(76)90154-3.

M. Jamil and X. S. Yang, “A LITERATURE SURVEY OF BENCHMARK FUNCTIONS FOR GLOBAL OPTIMISATION PROBLEMS,” International Journal of Mathematical Modelling and Numerical Optimisation, vol. 4, no. 2, pp. 150–194, 2013. doi: https://doi.org/10.1504/IJMMNO.2013.055204.

E. P. Adorio, “MVF-MULTIVARIATE TEST FUNCTIONS LIBRARY IN C FOR UNCONSTRAINED GLOBAL OPTIMIZATION.” [Online]. Available: http://www.mat.univie.ac.at/

W. Zhao, L. Wang, and S. Mirjalili, “ARTIFICIAL HUMMINGBIRD ALGORITHM: A NEW BIO-INSPIRED OPTIMIZER WITH ITS ENGINEERING APPLICATIONS,” Comput Methods Appl Mech Eng, vol. 388, Jan. 2022. doi: https://doi.org/10.1016/j.cma.2021.114194.

A. H. Gandomi, X. S. Yang, and A. H. Alavi, “ERRATUM: CUCKOO SEARCH ALGORITHM: A METAHEURISTIC APPROACH TO SOLVE STRUCTURAL OPTIMIZATION PROBLEMS,” Apr. 2013. doi: https://doi.org/10.1007/s00366-012-0308-4.

X.-S. Yang, C. Huyck, M. Karamanoglu, and N. Khan, “TRUE GLOBAL OPTIMALITY OF THE PRESSURE VESSEL DESIGN PROBLEM: A BENCHMARK FOR BIO-INSPIRED OPTIMISATION ALGORITHMS,” Mar. 2014. doi: https://doi.org/10.4018/jdsst.2013040103.

H. Bayzidi, S. Talatahari, M. Saraee, and C. P. Lamarche, “SOCIAL NETWORK SEARCH FOR SOLVING ENGINEERING OPTIMIZATION PROBLEMS,” Comput Intell Neurosci, vol. 2021, Sept. 2021. doi: https://doi.org/10.1155/2021/8548639.

R. Zheng, A. G. Hussien, H. M. Jia, L. Abualigah, S. Wang, and D. Wu, “AN IMPROVED WILD HORSE OPTIMIZER FOR SOLVING OPTIMIZATION PROBLEMS,” Mathematics, vol. 10, no. 8, Apr. 2022. doi: https://doi.org/10.3390/math10081311.

B. S. Yildiz, P. Mehta, N. Panagant, S. Mirjalili, and A. R. Yildiz, “A NOVEL CHAOTIC RUNGE KUTTA OPTIMIZATION ALGORITHM FOR SOLVING CONSTRAINED ENGINEERING PROBLEMS,” J Comput Des Eng, vol. 9, no. 6, pp. 2452–2465, Dec. 2022. doi: https://doi.org/10.1093/jcde/qwac113.

E. A. D. Kurniawan, F. Fatmawati, and A. Dianpermatasari, “MODEL MATEMATIKA SEAR DENGAN MEMPERHATIKAN FAKTOR MIGRASI TERINFEKSI UNTUK KASUS COVID-19 DI INDONESIA,” Limits: Journal of Mathematics and Its Applications, vol. 18, no. 2, p. 142, Nov. 2021. doi: https://doi.org/10.12962/limits.v18i2.7774.

P. Bratley and B. L. Fox, “Algorithm 659: IMPLEMENTING SOBOL’S QUASIRANDOM SEQUENCE GENERATOR,” ACM Transactions on Mathematical Software, vol. 14, no.1, pp. 88-100, 1988. doi: https://doi.org/10.1145/42288.42289

Antonov, I. A., and Saleev, V. M., "AN ECONOMIC METHOD OF COMPUTING LPΤ-SEQUENCES," USSR Computational Mathematics and Mathematical Physics, vol. 19, no. 1, pp. 252-256, 1979. doi: https://doi.org/10.1016/0041-5553(79)90085-5

C. A. C. Coello, “THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART,” Comput. Methods Appl. Mech. Eng. 191(11-12), 1245-1287, Jan. 2002. doi: https://doi.org/10.1016/S0045-7825(01)00323-1

C. A. C. Coello, "A SURVEY OF CONSTRAINT HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS," Laboratorio Nacional de Informática Avanzada, Veracruz, Mexico, 1999.

Published
2026-01-26
How to Cite
[1]
I. R. A.-Z. As-Shidiq, E. A. D. Kurniawan, and K. A. Sidarto, “ENHANCED GIANT TREVALLY OPTIMIZER FOR ENGINEERING DESIGN AND EPIDEMIOLOGICAL MODEL”, BAREKENG: J. Math. & App., vol. 20, no. 2, pp. 1229–1250, Jan. 2026.