PRELIMINARY MATHEMATICAL MODEL FOR CANCER TREATMENT USING BORON NEUTRON CANCER THERAPY (BNCT)

Keywords: BNCT, Cancer, Equilibrium solution, Immunotherapy, Stem-cells, Stability

Abstract

This article outlines a revolutionary approach to immunotherapy and stem-cell cancer treatments that leverages Boron Neutron Cancer Therapy (BNCT). We formulated two models, one being the immunotherapy-BNCT model and the other featuring a stem-cell model and BNCT therapy. The former simulates the dynamics of the concentration of BNCT with anticancer properties present at the cancer site, the number of cancer cells, and the blood drug concentration, while considering periodicity. Similarly, using boronophenylalanine in the simulation, our stem-cell BNCT model evaluates the drugs impact on the dynamics of cancer cells, stem cells, effector cells, and BNCT involvement. Using the eigenvalues of the Jacobian matrix calculated from those solutions, each model is examined for the stability of equilibrium solutions. Next, the equilibrium solution is generated and found to be unstable using the simulation parameters given in the literature. Furthermore, one of the equilibrium solutions has a zero-value variable, rendering it practically meaningless. The models have impacted the new approach to utilizing BNCT in immunotherapy and stem-cell therapy, underscoring the need for follow-up in developing stable and balanced model parameters. Such efforts will improve the existing model while also yielding positive results from the BNCT approach.

Downloads

Download data is not yet available.

References

V. Schirrmacher, “FROM CHEMOTHERAPY TO BIOLOGICAL THERAPY: A REVIEW OF NOVEL CONCEPTS TO REDUCE THE SIDE EFFECTS OF SYSTEMIC CANCER TREATMENT (REVIEW),” Int. J. Oncol., vol. 54, no. 2, pp. 407–419, 2019. doi: https://doi.org/10.3892/ijo.2018.4661.

S. Zouhri and M. EL Baroudi, “FREE END-TIME OPTIMAL CONTROL PROBLEM FOR CANCER CHEMOTHERAPY,” Differ. Equations Dyn. Syst., pp. 1–13, 2023. doi: https://doi.org/10.1007/s12591-023-00654-x.

J. Chen et al., “THERAPEUTIC NUCLEUS-ACCESS BNCT DRUG COMBINED CD47-TARGETING GENE EDITING IN GLIOBLASTOMA,” J. Nanobiotechnology, vol. 20, no. 1, pp. 1–18, 2022. doi: https://doi.org/10.1186/s12951-022-01304-0.

K. A. Shaver, T. J. Croom-Perez, and A. J. Copik, “NATURAL KILLER CELLS: THE LINCHPIN FOR SUCCESSFUL CANCER IMMUNOTHERAPY,” Front. Immunol., vol. 12, no. April, pp. 1–22, 2021. doi: https://doi.org/10.3389/fimmu.2021.679117.

X. Li, P. He, Y. Wei, C. Qu, F. Tang, and Y. Li, “APPLICATION AND PERSPECTIVES OF NANOMATERIALS IN BORON NEUTRON CAPTURE THERAPY OF TUMORS,” Cancer Nanotechnol., vol. 16, no. 1, 2025. doi: https://doi.org/10.1186/s12645-025-00324-3.

D. T. Chu et al.,“RECENT PROGRESS OF STEM CELL THERAPY IN CANCER TREATMENT: MOLECULAR MECHANISMS AND POTENTIAL APPLICATIONS,” Cells, vol. 9, no. 3, pp. 1–19, 2020. doi: https://doi.org/10.3390/cells9030563.

Op. P. Nave and M. Sigron, “A MATHEMATICAL MODEL FOR CANCER TREATMENT BASED ON COMBINATION OF ANTI-ANGIOGENIC AND IMMUNE CELL THERAPIES,” Results Appl. Math., vol. 16, p. 100330, 2022. doi: https://doi.org/10.1016/j.rinam.2022.100330.

W. A. G. Sauerwein et al., “THERANOSTICS IN BORON NEUTRON CAPTURE THERAPY,” Life, vol. 11, no. 4, 2021. doi: https://doi.org/10.3390/life11040330.

L. Pang, L. Shen, and Z. Zhao, “MATHEMATICAL MODELLING AND ANALYSIS OF THE TUMOR TREATMENT REGIMENS WITH PULSED IMMUNOTHERAPY AND CHEMOTHERAPY,” Comput. Math. Methods Med., vol. 2016, 2016. doi: https://doi.org/10.1155/2016/6260474.

O. Nave, “A MATHEMATICAL MODEL FOR TREATMENT USING CHEMO-IMMUNOTHERAPY,” Heliyon, vol. 8, no. 4, pp. 1–33, 2022. doi: https://doi.org/10.1016/j.heliyon.2022.e09288.

T. L. Sciences, “DEVELOPING TARGETED DRUGS FOR BORON NEUTRON CAPTURE THERAPY TO TREAT REFRACTORY CANCERS,” AE Life Sciences, 2021.

P. Wongthai et al., “BORONOPHENYLALANINE, A BORON DELIVERY AGENT FOR BORON NEUTRON CAPTURE THERAPY, IS TRANSPORTED BY ATB0,+, LAT1 AND LAT2,” Cancer Sci., vol. 106, no. 3, pp. 279–286, 2015. doi: https://doi.org/10.1111/cas.12602.

J. Chu, F. Gao, M. Yan, S. Zhao, Z. Yan, B. Shi, and Y. Liu, “NATURAL KILLER CELLS: A PROMISING IMMUNOTHERAPY FOR CANCER,” J. Transl. Med., vol. 20, no. 1, p. 240, 2022. doi: https://doi.org/10.1186/s12967-022-03437-0.

F. Fitriah, A. Suryanto, and N. Hidayat, “NUMERICAL STUDY OF PREDATOR-PREY MODEL WITH BEDDINGTON-DEANGELIS FUNCTIONAL RESPONSE AND PREY HARVESTING,” J. Trop. Life Sci., vol. 5, no. 2, pp. 105–109, 2015. doi: https://doi.org/10.11594/jtls.05.02.09.

Q. Yang, A. Traulsen, and P. M. Altrock, “INTEGRATION OF IMMUNE CELL-TARGET CELL CONJUGATE DYNAMICS CHANGES THE TIME SCALE OF IMMUNE CONTROL OF CANCER,” Bull. Math. Biol., vol. 87, no. 2, pp. 1–23, 2025. doi: https://doi.org/10.1007/s11538-024-01400-2.

S. A. Sakai et al., “MATHEMATICAL MODELING PREDICTS OPTIMAL IMMUNE CHECKPOINT INHIBITOR AND RADIOTHERAPY COMBINATIONS AND TIMING OF ADMINISTRATION,” Cancer Immunol. Res., vol. 13, no. 3, pp. 353–364, 2025. doi: https://doi.org/10.1158/2326-6066.CIR-24-0610.

G. Song, G. Liang, T. Tian, and X. Zhang, “MATHEMATICAL MODELING AND ANALYSIS OF TUMOR CHEMOTHERAPY,” Symmetry (Basel)., vol. 14, no. 4, pp. 1–15, 2022. doi: https://doi.org/10.3390/sym14040704.

M. Alqudah, “CANCER TREATMENT BY STEM CELLS AND CHEMOTHERAPY AS A MATHEMATICAL MODEL WITH NUMERICAL SIMULATIONS,” Alexandria Eng. J., vol. 59, no. 4, pp. 1953–1957, 2020. doi: https://doi.org/10.1016/j.aej.2019.12.025.

D. Sigal, M. Przedborski, S. Darshan, and K. Mohammad, “MATHEMATICAL MODELLING OF CANCER STEM CELL-TARGETED IMMUNOTHERAPY,” Math. Biosci., vol. 318, p. 31622595, 2019. doi: https://doi.org/10.1016/j.mbs.2019.108269.

C. Xu, S. Saifullah, A. Amir, and Adnan, “THEORETICAL AND NUMERICAL ASPECTS OF RUBELLA DISEASE MODEL INVOLVING FRACTAL FRACTIONAL EXPONENTIAL DECAY KERNEL,” Results Phys., vol. 34, no. 105287, 2022. doi: https://doi.org/10.1016/j.rinp.2022.105287.

A. M. S. Mahdy, K. K. A. Gepreel, K. Kh. Lotfy, and A. El-Bary, “A NUMERICAL METHOD FOR SOLVING THE RUBELLA AILMENT DISEASE MODEL,” Int. J. Mod. Phys. C, vol. Vol. 32, no. 07, p. 2150097, 2021. doi: https://doi.org/10.1142/S0129183121500972.

M. Higazy, A. El-Mesady, A. M. S. Mahdy, S. Ullah, and A. Al-Ghamdi, “NUMERICAL, APPROXIMATE SOLUTIONS, AND OPTIMAL CONTROL ON THE DEATHLY LASSA HEMORRHAGIC FEVER DISEASE IN PREGNANT WOMEN,” J. Funct. Spaces, vol. 2021, 2021. doi: https://doi.org/10.1155/2021/2444920.

A. Mahdy, “STABILITY, EXISTENCE, AND UNIQUENESS FOR SOLVING FRACTIONAL GLIOBLASTOMA MULTIFORME USING A CAPUTO–FABRIZIO DERIVATIVE,” Math. Methods Appl. Sci., 2023. doi: https://doi.org/https://doi.org/10.1002/mma.9038.

M. Khader, N. Sweilam, and A. Mahdy, “TWO COMPUTATIONAL ALGORITHMS FOR THE NUMERICAL SOLUTION FOR SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS,” Arab J. Math. Sci., vol. 21, no. 1, pp. 39–52, 2015. doi: https://doi.org/https://doi.org/10.1016/j.ajmsc.2013.12.001.

Y. Amer, A. Mahdy, and H. H.A.R. Namoos, “REDUCED DIFFERENTIAL TRANSFORM METHOD FOR SOLVING FRACTIONAL-ORDER BIOLOGICAL SYSTEMS,” J. Eng. Appl. Sci., vol. 13, pp. 8489–8493, 2018. doi: https://doi.org/10.36478/jeasci.2018.8489.8493.

A. M. S. Mahdy, “A NUMERICAL METHOD FOR SOLVING THE NONLINEAR EQUATIONS OF EMDEN-FOWLER MODELS,” J. Ocean Eng. Sci., no. July, 2022. doi: https://doi.org/10.1016/j.joes.2022.04.019.

A. Mahdy, K. Kh. Lotfy, and A. A. El-Bary, “USE OF OPTIMAL CONTROL IN STUDYING THE DYNAMICAL BEHAVIORS OF FRACTIONAL FINANCIAL AWARENESS MODELS,” Soft Comput., vol. 26, pp. 3401–3409, 2022.

M. H. Birnbaum and S. V Wakcher, “WEB-BASED EXPERIMENTS CONTROLLED,” vol. 34, no. 2, pp. 189–199, 2002.

R. P. Agarwal, H. Simona, and R. Donal O, Runge – Kutta Method. Springer, 2019.

J. Hueso, E. Martínez, and C. Teruel, “DETERMINATION OF MULTIPLE ROOTS OF NONLINEAR EQUATIONS AND APPLICATIONS,” J. Math. Chem., vol. 53, no. 3, pp. 880–892, 2015. doi: https://doi.org/10.1007/s10910-014-0460-8.

R. Dehghan, “A NEW ITERATIVE METHOD FOR FINDING THE MULTIPLE ROOTS OF NONLINEAR EQUATIONS,” Afrika Mat., vol. 30, no. 30, pp. 747–753, 2019. doi: https://doi.org/10.1007/s13370-019-00681-4.

P. G. Samy, J. Kanesan, and Z. C. Tiu, “OPTIMIZATION OF CHEMOTHERAPY USING HYBRID OPTIMAL CONTROL AND SWARM INTELLIGENCE,” IEEE Access, vol. 11, no. March, pp. 28873–28886, 2023. doi: https://doi.org/10.1109/ACCESS.2023.3254210.

Published
2026-01-26
How to Cite
[1]
S. Trihandaru, H. A. Parhusip, Y. Sardjono, I. M. Triatmoko, G. S. Wijaya, and J. Labadin, “PRELIMINARY MATHEMATICAL MODEL FOR CANCER TREATMENT USING BORON NEUTRON CANCER THERAPY (BNCT)”, BAREKENG: J. Math. & App., vol. 20, no. 2, pp. 1283–1300, Jan. 2026.