OPTIMAL STRATEGIES FOR DENGUE CONTROL: WOLBACHIA-INFECTED MOSQUITOES DEPLOYMENT, PUBLIC HEALTH EDUCATION, AND VACCINATION

  • Toni Bakhtiar Department of Mathematics, School of Data Science, Mathematics, and Informatics, IPB University, Indonesia https://orcid.org/0000-0002-7426-1620
  • Jaharuddin Jaharuddin Department of Mathematics, School of Data Science, Mathematics, and Informatics, IPB University, Indonesia https://orcid.org/0000-0003-1732-9809
  • Farida Hanum Department of Mathematics, School of Data Science, Mathematics, and Informatics, IPB University, Indonesia https://orcid.org/0000-0002-3340-789X
Keywords: Biocontrol, Dengue fever, Optimal control, Public health education, Vaccination, Wolbachia-infected mosquito

Abstract

Wolbachia-infected mosquitoes present a promising method for dengue control by inhibiting viral replication, reducing mosquito reproductive capacity, and shortening the lifespan of Aedes aegypti mosquitoes. This study introduces a novel optimal control model that uniquely integrates two distinct release strategies for Wolbachia-infected mosquitoes—constant and proportional rates. While prior research has explored Wolbachia deployment, our model is the first to directly compare and contrast these two rate types within the same framework to assess their differential impact on dengue transmission dynamics. This provides a more comprehensive understanding of effective release protocols, addressing a critical gap in the literature regarding optimal and adaptive Wolbachia deployment. Based on model simulations for North Kembangan Village, Jakarta, we find that a single-control strategy using Wolbachia mosquito release alone can reduce dengue cases by up to 15%. However, a multiple-control strategy that combines Wolbachia releases with public health education and vaccination is the most effective approach, achieving a substantial reduction of up to 58%. In a cost-effectiveness analysis, the study reveals that the Wolbachia-only strategy (proportional release) is the most cost-effective in terms of cost per infection averted. In terms of release dynamics, the study reveals that a constant release rate provides long-term benefits by establishing a stable Wolbachia-infected mosquito population, whereas a proportional release rate is more effective for achieving a rapid, short-term reduction in dengue cases.

Downloads

Download data is not yet available.

References

J. Clarke, A. Lim, P. Gupte, D. M. Pigott, W. G. van Panhuis, and O. J. Brady, “A GLOBAL DATASET OF PUBLICLY AVAILABLE DENGUE CASE COUNT DATA,” Scientific Data, vol. 11, no. 296, pp. 1-14, 2024. doi: https://doi.org/10.1038/s41597-024-03120-7.

J. P. Messina et al., “THE CURRENT AND FUTURE GLOBAL DISTRIBUTION AND POPULATION AT RISK OF DENGUE,” Nature Microbiology, vol. 4, pp. 1508-1515, 2019. doi: https://doi.org/10.1038/s41564-019-0476-8.

WHO, “DENGUE–GLOBAL SITUATION. DISEASE OUTBREAK NEWS,” DON518, 2024.

A. C. Procopio et al., “INTEGRATED ONE HEALTH STRATEGIES IN DENGUE,” One Health, vol. 18, p. 100684, 2024. doi: https://doi.org/10.1016/j.onehlt.2024.100684.

A. Sa’adah and D. K. Sari, “MATHEMATICAL MODELS OF DENGUE TRANSMISSION DYNAMICS WITH VACCINATION AND WOLBACHIA PARAMETERS AND SEASONAL ASPECTS,” BAREKENG: Journal of Mathematics and Its Applications, vol. 17, no. 4, p. 2305–2316, 2023. doi: https://doi.org/10.30598/barekengvol17iss4pp2305-2316

A. M. Fallon, “WOLBACHIA: ADVANCING INTO A SECOND CENTURY,” in Wolbachia: methods and protocols, Methods in Molecular Biology, New York, NY: Humana Press, 2024, pp. 1-13. doi: https://doi.org/10.1007/978-1-0716-3553-7_1

D. Buchori, A. Mawan, I. Nurhayati, A. Aryati, H. Kusnanto, and U. K. Hadi, “RISK ASSESSMENT ON THE RELEASE OF WOLBACHIA-INFECTED AEDES AEGYPTI IN YOGYAKARTA, INDONESIA,” Insects, vol. 13, no. 10, p. 924, 2022. doi: https://doi.org/10.3390/insects13100924.

A. Utarini et al., “EFFICACY OF WOLBACHIA-INFECTED MOSQUITO DEPLOYMENTS FOR THE CONTROL OF DENGUE,” The New England Journal of Medicine, vol. 384, p. 2177–2186, 2021. doi: https://doi.org/10.1056/nejmoa2030243.

J. Clarke, A. Lim, P. Gupte, D. M. Pigott, W. G. van Panhuis, and O. J. Brady, “A GLOBAL DATASET OF PUBLICLY AVAILABLE DENGUE CASE COUNT DATA,” Scientific Data, vol. 11, no. 296, pp. 1-14, 2024. doi: https://doi.org/10.1038/s41597-024-03120-7.

Z. Zhang and B. Zheng, “DYNAMICS OF A MOSQUITO POPULATION SUPPRESSION MODEL WITH A SATURATED WOLBACHIA RELEASE RATE,” Applied Mathematics Letters, vol. 129, p. 107933, 2022. doi: https://doi.org/10.1016/j.aml.2022.107933.

A. Abidemi, Fatmawati, and O. J. Peter, “AN OPTIMAL CONTROL MODEL FOR DENGUE DYNAMICS WITH ASYMPTOMATIC, ISOLATION, AND VIGILANT COMPARTMENTS,” Decision Analytics Journal, vol. 10, p. 100413, 2024. doi: https://doi.org/10.1016/j.dajour.2024.100413.

Y. Yoda, H. Ouedraogo, D. Ouedraogo, and A. Guiro, “MATHEMATICAL ANALYSIS AND OPTIMAL CONTROL OF DENGUE FEVER EPIDEMIC MODEL,” Advances in Continuous and Discrete Models, vol. 2024, no. 11, 2024. doi: https://doi.org/10.1186/s13662-024-03805-8

R. P. Kumar, G. S. Mahapatra, P. K. Santra, and J. J. Nieto, “OPTIMAL CONTROL FOR DENGUE TRANSMISSION BASED ON A MODEL WITH REINFECTION AND TREATMENT,” Mathematical Population Studies, vol. 31, no. 3, p. 165–203, 2024. doi: https://doi.org/10.1080/08898480.2024.2394659.

B. D. Hollingsworth et al., “ECONOMIC OPTIMIZATION OF WOLBACHIA-INFECTED AEDES AEGYPTI RELEASE TO PREVENT DENGUE,” Pest Management Science, vol. 80, no. 8, p. 3829–3838, 2024. doi: https://doi.org/10.1002/ps.8086.

L. Almeida et al., “OPTIMAL RELEASE OF MOSQUITOES TO CONTROL DENGUE TRANSMISSION,” ESAIM: Proceedings and Surveys, vol. 67, pp. 16-29, 2020. doi: https://doi.org/10.1051/proc/202067002.

P. Pongsumpun, J. Lamwong, I.-M. Tang, and P. Pongsumpun, “A MODIFIED OPTIMAL CONTROL FOR THE MATHEMATICAL MODEL OF DENGUE VIRUS WITH VACCINATION,” AIMS Mathematics, vol. 8, no. 11, p. 27460–27487, 2023. doi: https://doi.org/10.3934/math.20231405.

A. K. Srivastav, A. Kumar, P. K. Srivastava, and M. Ghosh, “MODELING AND OPTIMAL CONTROL OF DENGUE DISEASE WITH SCREENING AND INFORMATION,” The European Physical Journal Plus, vol. 136, no. 1187, 2021. doi: https://doi.org/10.1140/epjp/s13360-021-02164-7.

J. Dianavinnarasi, R. Raja, J. Alzabut, M. Niezabitowski, G. Selvam, and O. Bagdasar, “AN LMI APPROACH-BASED MATHEMATICAL MODEL TO CONTROL AEDES AEGYPTI MOSQUITOES POPULATION VIA BIOLOGICAL CONTROL,” Mathematical Problems in Engineering, vol. 2021, p. 5565949, 2021. doi: https://doi.org/10.3390/sym13030434.

C. J. McMeniman et al., “STABLE INTRODUCTION OF A LIFE-SHORTENING WOLBACHIA INFECTION INTO THE MOSQUITO AEDES AEGYPTI,” Science, vol. 323, pp. 141-144, 2009. doi: https://doi.org/10.1126/science.1165326.

L. A. Moreira et al., “A WOLBACHIA SYMBIONT IN AEDES AEGYPTI LIMITS INFECTION WITH DENGUE, CHIKUNGUNYA, AND PLASMODIUM,” Cell, vol. 139, p. 1268–1278, 2009. doi: https://doi.org/10.1016/j.cell.2009.11.042.

J. Osorio et al., “WMEL WOLBACHIA ALTERS FEMALE POST-MATING BEHAVIORS AND PHYSIOLOGY IN THE DENGUE VECTOR MOSQUITO AEDES AEGYPTI,” Communications Biology, vol. 6, no. 865, 2023. doi: https://doi.org/10.21203/rs.3.rs-2692816/v1.

A. T. Aziz, S. A. Al-Shami, J. A. Mahyoub, M. Hatabbi, A. H. Ahmad, and C. S. M. Rawi, “PROMOTING HEALTH EDUCATION AND PUBLIC AWARENESS ABOUT DENGUE AND ITS MOSQUITO VECTOR IN SAUDI ARABIA,” Parasites & Vectors, vol. 7, no. 487, pp. 1-2, 2014. doi: https://doi.org/10.1186/s13071-014-0487-5.

J. W. Chng, T. Parvathi, and J. Pang, “KNOWLEDGE, ATTITUDES AND PRACTICES OF DENGUE PREVENTION BETWEEN DENGUE SUSTAINED HOTSPOTS AND NON-SUSTAINED HOTSPOTS IN SINGAPORE: A CROSS-SECTIONAL STUDY,” Scientific Reports, vol. 12, p. 18426, 2022. doi: https://doi.org/10.21203/rs.3.rs-1472451/v1.

S. J. Thomas and A. L. Rothman, “TRIALS AND TRIBULATIONS ON THE PATH TO DEVELOPING A DENGUE VACCINE,” American Journal of Preventive Medicine, vol. 49, p. S334–S344, 2015. doi: https://doi.org/10.1016/j.amepre.2015.09.006.

A. B. Wilder-Smith, D. O. Freedman, and A. Wilder-Smith, “EDGING TOWARDS A THIRD DENGUE VACCINE,” The Lancet Infectious Diseases, vol. 24, no. 11, p. 1182–1184, 2024. doi:. https://doi.org/10.1016/s1473-3099(24)00434-1.

M. L. Nogueira et al., “EFFICACY AND SAFETY OF BUTANTAN-DV IN PARTICIPANTS AGED 2–59 YEARS THROUGH AN EXTENDED FOLLOW-UP: RESULTS FROM A DOUBLE-BLIND, RANDOMISED, PLACEBOCONTROLLED, PHASE 3, MULTICENTRE TRIAL IN BRAZIL,” The Lancet Infection Diseases, vol. 24, no. 11, pp. 1234-1244, 2024.

R. Nasution, “JAKARTA LEANS ON WOLBACHIA METHOD FOR DENGUE CONTROL,” 2 October 2024. [Online]. Available: https://en.antaranews.com/news/328143/jakarta-leans-on-wolbachia-method-for-dengue-control. [Accessed 17 November 2024].

BPS Statistics of Jakarta Barat Municipality, “KEMBANGAN SUBDISTRICT IN FIGURES 2023,” [Online]. Available: https://barat.jakarta.go.id/batik/storage/ layanan/astik/statistik/Kecamatan_Kembangan_Dalam_Angka_2023.pdf. [Accessed 21 November 2024].

WHO, “DENGUE AND SEVERE DENGUE,” 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. [Accessed 4 November 2024].

M. H. Zahid, H. van Wyk, A. C. Morrison, J. Coloma, G. O. Lee, and J. N. S. Eisenberg, “THE BITING RATE OF AEDES AEGYPTI AND ITS VARIABILITY: A SYSTEMATIC REVIEW (1970–2022),” PLOS Neglected Tropical Diseases, vol. 17, no. 8, p. e0010831, 2023. https://doi.org/10.1371/journal.pntd.0010831.

N. Chitnis, J. M. Hyman, and J. M. Cushing, “DETERMINING IMPORTANT PARAMETERS IN THE SPREAD OF MALARIA THROUGH THE SENSITIVITY ANALYSIS OF A MATHEMATICAL MODEL,” Bulletin of Mathematical Biology, vol. 70, p. 1272–1296, 2008. doi: https://doi.org/10.1007/s11538-008-9299-0.

J. E. Fraser et al., “NOVEL WOLBACHIA-TRANSINFECTED AEDES AEGYPTI MOSQUITOES POSSESS DIVERSE FITNESS AND VECTOR COMPETENCE PHENOTYPES,” PLoS Pathogens, vol. 13, p. e1006751, 2017. doi: https://doi.org/10.1371/journal.ppat.1006751.

H. B. Usman et al., “EFFECT OF HEALTH EDUCATION ON DENGUE FEVER: A COMPARISON OF KNOWLEDGE, ATTITUDE, AND PRACTICES IN PUBLIC AND PRIVATE HIGH SCHOOL CHILDREN OF JEDDAH,” Cureus, vol. 10, no. 12, p. e3809, 2018. doi: https://doi.org/10.7759/cureus.3809.

A. A. Suwantika, W. Supadmi, M. Ali, and R. Abdulah, “COST-EFFECTIVENESS AND BUDGET IMPACT ANALYSES OF DENGUE VACCINATION IN INDONESIA,” PLOS Neglected Tropical Diseases, vol. 15, no. 8, p. e0009664, 2021. doi: https://doi.org/10.1371/journal.pntd.0009664.

N. N. Wilastonegoro et al., “COST OF DENGUE ILLNESS IN INDONESIA ACROSS HOSPITAL, AMBULATORY, AND NOT MEDICALLY ATTENDED SETTINGS,” The American Journal of Tropical Medicine and Hygiene, vol. 103, no. 5, pp. 2029-2039, 2020. doi: https://doi.org/10.4269/ajtmh.19-0855.

G. Knerer, C. S. M. Currie, and S. C. Brailsford, “THE ECONOMIC IMPACT AND COSTEFFECTIVENESS OF COMBINED VECTOR-CONTROL AND DENGUE VACCINATION STRATEGIES IN THAILAND: RESULTS FROM A DYNAMIC TRANSMISSION MODEL,” PLoS Neglected Tropical Diseases, vol. 14, no. 10, p. e0008805, 2020. doi: https://doi.org/10.1371/journal.pntd.0008805.

O. J. Brady et al., “THE COST-EFFECTIVENESS OF CONTROLLING DENGUE IN INDONESIA USING WMEL WOLBACHIA RELEASED AT SCALE: A MODELLING STUDY,” BMC Medicine, vol. 18, no. 186, pp. 1-12, 2020. doi: https://doi.org/10.1186/s12916-020-01638-2.

P. A. Hancock, S. P. Sinkins, and H. C. J. Godfray, “STRATEGIES FOR INTRODUCING WOLBACHIA TO REDUCE TRANSMISSION OF MOSQUITO-BORNE DISEASES,” PLOS Neglected Tropical Diseases, vol. 6, no. 4, p. e1024, 2011. doi: https://doi.org/10.1371/journal.pntd.0001024.

I. D. Velez et al., “LARGESCALE RELEASES AND ESTABLISHMENT OF WMEL WOLBACHIA IN AEDES AEGYPTI MOSQUITOES THROUGHOUT THE CITIES OF BELLO, MEDELLIN AND ITAGUI, COLOMBIA,” PLOS Neglected Tropical Diseases, vol. 17, no. 11, p. e0011642, 2023. doi: https://doi.org/10.1371/journal.pntd.0011642.

M. Paulden, “CALCULATING AND INTERPRETING ICERS AND NET BENEFIT,” PharmacoEconomics, vol. 38, p. 785–807, 2020. doi: https://doi.org/10.1007/s40273-020-00914-6.

Published
2026-01-26
How to Cite
[1]
T. Bakhtiar, J. Jaharuddin, and F. Hanum, “OPTIMAL STRATEGIES FOR DENGUE CONTROL: WOLBACHIA-INFECTED MOSQUITOES DEPLOYMENT, PUBLIC HEALTH EDUCATION, AND VACCINATION”, BAREKENG: J. Math. & App., vol. 20, no. 2, pp. 1301–1316, Jan. 2026.